Artículos de revistas sobre el tema "Low temperature processing"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Low temperature processing.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Low temperature processing".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Admane, Darshana C. y Sneha V. Karadbhajne. "Advances in Low Temperature Processing". International Journal of Engineering Trends and Technology 67, n.º 10 (25 de octubre de 2019): 100–112. http://dx.doi.org/10.14445/22315381/ijett-v67i10p219.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

TAKAI, Rikuo. "Foods Processing in Low Temperature". Journal of the Society of Mechanical Engineers 99, n.º 927 (1996): 103–6. http://dx.doi.org/10.1299/jsmemag.99.927_103.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lill, Thorsten, Andreas Fischer, Ivan Berry y Meihua Shen. "Low Temperature Semiconductor Device Processing". ECS Meeting Abstracts MA2022-02, n.º 18 (9 de octubre de 2022): 866. http://dx.doi.org/10.1149/ma2022-0218866mtgabs.

Texto completo
Resumen
In the manufacturing of integrated circuits, etching and deposition processes with and without plasma are widely used. Except for physical processes such as Physical Vapor Deposition and Ion Beam Etching, these processes leverage the adsorption of reactive neutrals to enable chemical reactions at the wafer surface. In this paper, we will investigate the fundamentals and applicability of low temperatures to stimulate physisorption of neutrals. Among the points of interest for this approach are the use of less reactive gases, higher fluxes to the surface, new transport mechanisms into high aspect ratio features, and 3D effects thanks to condensation in small features. We will discuss temperature and pressure ranges for relevant material and pre-cursor gas combinations and means to initiate the deposition and etching reactions. An overview of experimental results from our research and the literature will be presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Mandrov, G. A., V. I. Klishin y V. A. Fedorin. "Low-temperature processing of Volga fuel shale". Coke and Chemistry 57, n.º 1 (enero de 2014): 30–32. http://dx.doi.org/10.3103/s1068364x14010062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Xiao, S. Q., S. Xu y K. Ostrikov. "Low-temperature plasma processing for Si photovoltaics". Materials Science and Engineering: R: Reports 78 (abril de 2014): 1–29. http://dx.doi.org/10.1016/j.mser.2014.01.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lim, Kwang-Young, Young-Wook Kim y In-Hyuck Song. "Low-temperature processing of porous SiC ceramics". Journal of Materials Science 48, n.º 5 (26 de octubre de 2012): 1973–79. http://dx.doi.org/10.1007/s10853-012-6963-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nayak, Yougojoti, Raghunath Rana, Swadesh Pratihar y Santanu Bhattacharyya. "Low-Temperature Processing of Dense HydroxyapatiteZirconia Composites". International Journal of Applied Ceramic Technology 5, n.º 1 (enero de 2008): 29–36. http://dx.doi.org/10.1111/j.1744-7402.2008.02180.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Alzanki, T., R. Gwilliam, N. G. Emerson y B. J. Sealy. "Low-temperature processing of antimony-implanted silicon". Journal of Electronic Materials 33, n.º 7 (julio de 2004): 767–69. http://dx.doi.org/10.1007/s11664-004-0238-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mathur, P., A. Thakur y M. Singh. "Low temperature processing of Mn–Zn nanoferrites". Journal of Materials Science 42, n.º 19 (octubre de 2007): 8189–92. http://dx.doi.org/10.1007/s10853-007-1690-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ewais, Emad M. M., Yasser M. Z. Ahmed, Ahmed A. M. El-Amir y Hamdy El-Didamony. "Cement kiln dust/rice husk ash as a low temperature route for wollastonite processing". Epitoanyag - Journal of Silicate Based and Composite Materials 66, n.º 3 (2014): 69–80. http://dx.doi.org/10.14382/epitoanyag-jsbcm.2014.14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Ostrikov, K., I. Levchenko, S. Xu, S. Y. Huang, Q. J. Cheng, J. D. Long y M. Xu. "Self-assembled low-dimensional nanomaterials via low-temperature plasma processing". Thin Solid Films 516, n.º 19 (agosto de 2008): 6609–15. http://dx.doi.org/10.1016/j.tsf.2007.11.045.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Menot-Vionnet, Sonia, Thomas Maeder, Claudio Grimaldi, Caroline Jacq y Peter Ryser. "Properties and Stability of Thick-Film Resistors with Low Processing Temperatures - Effect of Composition and Processing Parameters". Journal of Microelectronics and Electronic Packaging 3, n.º 1 (1 de enero de 2006): 37–43. http://dx.doi.org/10.4071/1551-4897-3.1.37.

Texto completo
Resumen
In this work, the properties (sheet-resistance, temperature coefficient and piezoresistance / gauge factor) and stability of thick-film resistors with low firing temperatures (525…650°C) are studied. To this end, two low-melting lead borosilicate glass compositions have been chosen, together with RuO2 as conductive filler. The effect on the properties and stability of composition and firing temperature is studied. The stability of the materials is quantified during high-temperature storage (annealing) at 250°C. These results show that reasonable resistive and piezoresistive properties, as well as stability, can be obtained even using lower processing temperatures compatible with deposition onto steel, titanium, aluminum and glass substrates.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Misra, V., S. Hattangady, X.-L. Xu, M. J. Watkins, B. Hornung, G. Lucovsky, J. J. Wortman et al. "Integrated processing of stacked-gate heterostructures: plasma-assisted low temperature processing combined with rapid thermal high-temperature processing". Microelectronic Engineering 25, n.º 2-4 (agosto de 1994): 209–14. http://dx.doi.org/10.1016/0167-9317(94)90017-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Buyanova, I. V., S. M. Lupinskaya, L. A. Ostroumov y I. A. Mazeeva. "Innovative low temperature methods of milk whey processing". IOP Conference Series: Earth and Environmental Science 640, n.º 3 (1 de febrero de 2021): 032007. http://dx.doi.org/10.1088/1755-1315/640/3/032007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

TAKAI, Rikuo. "Energy Consumption in Food Processing at Low Temperature." journal of the japanese society for cold preservation of food 20, n.º 4 (1994): 201–6. http://dx.doi.org/10.5891/jafps1987.20.4_201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Chiang, C. K., L. P. Cook, S. S. Chang, J. E. Blendell y R. S. Roth. "LOW TEMPERATURE THERMAL PROCESSING OF Ba2YCu3O7-xSUPERCONDUCTING CERAMICS". Advanced Ceramic Materials 2, n.º 3B (julio de 1987): 530–38. http://dx.doi.org/10.1111/j.1551-2916.1987.tb00117.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Ito, Yasuyuki, Maho Ushikubo, Seiichi Yokoyama, Hironori Matsunaga, Tsutomu Atsuki, Tadashi Yonezawa y Katsumi Ogi. "New Low Temperature Processing of Sol-GelSrBi2Ta2O9Thin Films". Japanese Journal of Applied Physics 35, Part 1, No. 9B (30 de septiembre de 1996): 4925–29. http://dx.doi.org/10.1143/jjap.35.4925.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Dumay, Eliane, Laetitia Picart, Stéphanie Regnault y Maryse Thiebaud. "High pressure–low temperature processing of food proteins". Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1764, n.º 3 (marzo de 2006): 599–618. http://dx.doi.org/10.1016/j.bbapap.2005.12.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Hsu, Wei-Hsiang, Hsing-I. Hsiang, Fan-Chun Yen, Shih-Chang Shei y Fu-Su Yen. "Low-temperature sintered CuIn0.7Ga0.3Se2 prepared by colloidal processing". Journal of the European Ceramic Society 32, n.º 14 (noviembre de 2012): 3753–57. http://dx.doi.org/10.1016/j.jeurceramsoc.2012.05.031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Diaz, Alfredo J., David Ma, Alfred Zinn y Pedro O. Quintero. "Tin Nanoparticle-Based Solder Paste for Low Temperature Processing". Journal of Microelectronics and Electronic Packaging 10, n.º 4 (1 de octubre de 2013): 129–37. http://dx.doi.org/10.4071/imaps.386.

Texto completo
Resumen
Materials have shown a tendency to modify their bulk properties depending on powder particle size. Nanoparticles' coalescence temperature tends to decrease as particle size decreases. Taking advantage of this behavior, a nanoparticle-based solder paste has been developed as a proof-of-concept and is described in this paper for attaching electronic components at a lower processing temperature to avoid thermally induced damage and reduce energy consumption. Tin nanoparticles were successfully synthesized via a wet chemistry route. The synthesis consists on the use tin (II) chloride dehydrated as the Sn precursor, 1,10-phenanthroline as the surfactant, and sodium borohydride as the reducing agent. A flux system was developed based on ethylene glycol. The solder paste based on the synthesized Sn nanoparticles showed good surface wetting, but not a sufficient metal volume to produce an attachment because the paste required high flux content, thus resulting in a poor metallic load paste. By using commercially procured Sn nanoparticles the results showed acceptable coalescence of the noncapped nanoparticles at temperatures as low as 200°C with a processing time of 20 min. A reduction in processing temperature of approximately 40°C has been found when comparing the developed solder paste with typical SAC lead-free solders. The mechanical and electrical properties of the resulting structure were characterized by means of lap-shear testing and a four-wire Kelvin test showing acceptable shear strength and electrical conductivity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Ware, Tim, David Hanlon, Tara Hanlon, Richard Hiles, Malcolm Lingard, Ray Perry y Simon Richards. "Processing and application of nuclear data for low temperature criticality assessment". EPJ Web of Conferences 239 (2020): 14006. http://dx.doi.org/10.1051/epjconf/202023914006.

Texto completo
Resumen
Until recently, criticality safety assessment codes had a minimum temperature at which calculations can be performed. Where criticality assessment has been required for lower temperatures, indirect methods, including reasoned argument or extrapolation, have been required to assess reactivity changes associated with these temperatures. The ANSWERS Software Service MONK® version 10B Monte Carlo criticality code, is capable of performing criticality calculations at any temperature, within the temperature limits of the underlying nuclear data in the BINGO continuous energy library. The temperature range of the nuclear data has been extended below the traditional lower limit of 293.6 K to 193 K in a prototype BINGO library, primarily based on JEFF-3.1.2 data. The temperature range of the thermal bound scattering data of the key moderator materials was extended by reprocessing the NJOY LEAPR inputs used to produce bound data for JEFF-3.1.2 and ENDF/B-VIII.0. To give confidence in the low temperature nuclear data, a series of MONK and MCBEND calculations have been performed and results compared against external data sources. MCBEND is a Monte Carlo code for shielding and dosimetry and shares commonalities to its sister code MONK including the BINGO nuclear data library. Good agreement has been achieved between calculated and experimental cross sections for ice, k-effective results for low temperature criticality benchmarks and calculated and experimentally determined eigenvalues for thermal neutron diffusion in ice. To quantify the differences between ice and water bound scattering data a number of MONK criticality calculations were performed for nuclear fuel transport flask configurations. The results obtained demonstrate good agreement with extrapolation methods. There is a discernible difference in the use of ice and water data.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Henderson, Clifford, Michael Romeo, Kazuhiro Yamanaka y Kazuhiko Maeda. "Novel Low-Dielectric Constant Photodefinable Polyimides for Low-Temperature Polymer Processing". ECS Transactions 3, n.º 11 (21 de diciembre de 2019): 107–15. http://dx.doi.org/10.1149/1.2392924.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Shamlaye, Karl F., Kevin J. Laws y Michael Ferry. "Fabrication of Bulk Metallic Glass Composites at Low Processing Temperatures". Materials Science Forum 773-774 (noviembre de 2013): 461–65. http://dx.doi.org/10.4028/www.scientific.net/msf.773-774.461.

Texto completo
Resumen
Bulk metallic glasses (BMGs) are amorphous alloys that exhibit unique mechanical properties such as high strength due to their liquid-like structure in the vitreous solid state. While they usually exhibit low ductility, they can be toughened by incorporating secondary phase particles within the amorphous matrix via composite fabrication to generate amorphous metal matrix composites (MMCs). Traditional MMCs are fabricated at high temperature in the liquid state with tedious blending processes. This high temperature processing route often leads to unwanted reactions at the reinforcement/matrix interface, creating brittle intermetallic by-products and damaging the reinforcement. In the present work, novel bulk metallic glass composites (BMGCs) were fabricated at low processing temperatures via thermoplastic forming (TPF) above the glass transition temperature of the amorphous matrix. Here, the unique thermophysical features of the matrix material allow for TPF of composites in non-sacrificial moulds incorporating various types of reinforcement, via processing in the solid state at low temperatures (less than 200 °C), within a short timeframe (less than 10 minutes); this avoids the formation of brittle phases at the reinforcement/matrix interface leading to efficient bonding between particles and matrix, thereby creating a tough, low density composite material.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Waller, Matthew D., Charles E. Bakis, Kevin L. Koudela y Sean M. McIntyre. "Processing and properties of low-temperature cure carbon fiber-reinforced bismaleimide composite". Journal of Composite Materials 56, n.º 8 (17 de febrero de 2022): 1191–209. http://dx.doi.org/10.1177/00219983211070348.

Texto completo
Resumen
Bismaleimide (BMI) resins are used in carbon fiber reinforced composites for high-temperature applications. Conventional BMI resins require high cure and post-cure processing temperatures, which limit fabrication methods and contribute to residual stress and microcracking. Recently, BMIs with lower cure temperatures have been developed; however, little data on the properties of low-temperature cure carbon/BMI composites are available in the open literature. In this study, processing and properties of a low-temperature cure BMI resin system, referred to here as BMI-2, were evaluated. Along with evaluation of neat resin properties, multi-directional woven carbon fiber reinforced BMI-2 composite laminates were fabricated by an out-of-autoclave, vacuum-bag-only resin infusion method. New data on the mechanical, thermal, and moisture absorption properties are presented. It was found that the resin infusion method produced laminates with fiber volume fraction of approximately 55% and immeasurably low void content. BMI-2 was found to attain a degree of cure of 96% and glass transition temperature of 366°C following a 163°C cure cycle. Cured laminates did not suffer from process-induced cracking at the inter- or intra-laminar levels. Tensile strength and modulus of quasi-isotropic specimens with woven AS4 carbon fiber were 443 MPa and 47.6 GPa, respectively, and failure under quasi-static tension occurred by delamination. Compression strength was stable across a wide temperature range, with quasi-isotropic specimens retaining 60% of their room temperature compression strength at 260°C. Equilibrium moisture content of composite specimens was 1.2% by weight.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Yefimov, V., I. Pulemetov y S. Doilov. "LOW-TEMPERATURE PROCESSING OF COLOMBIAN COAL IN EXPERIMENTAL RETORT". Oil Shale 16, n.º 2 (1999): 149. http://dx.doi.org/10.3176/oil.1999.2.06.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Joonas, R., V. Yefimov, S. Doilov y G. Serkovskaya. "LOW-TEMPERATURE PROCESSING OF WASTE TYRES IN EXPERIMENTAL RETORT". Oil Shale 17, n.º 4 (2000): 351. http://dx.doi.org/10.3176/oil.2000.4.06.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Peterson, Ken A., Daniel S. Krueger y Charles E. Sandoval. "Selected Applications and Processing for Low Temperature Cofired Ceramic". International Symposium on Microelectronics 2010, n.º 1 (1 de enero de 2010): 000248–53. http://dx.doi.org/10.4071/isom-2010-tp3-paper2.

Texto completo
Resumen
Low Temperature Cofired Ceramic technology has proven itself in microelectronics, microsystems (including microfluidic systems), sensors, radio frequency (RF) features, and various other non-electronic applications. We will discuss selected applications and the processing associated with those applications. We will then focus on our recent work in the area of electromagnetic isolation (EMI) shielding using full tape thickness features (FTTF) and sidewall metallization. The FTTF is very effective in applications with −150 dB isolation requirements, but presents obvious processing difficulties in full-scale fabrication. The FTTF forms a single continuous solid wall around the volume to be shielded by using sequential punching and feature-filling. Sidewall metallization provides another method for shielding. We discuss the material incompatibilities and manufacturing considerations that need to be addressed for such structures and show preliminary implementations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Hirotsu, T. y Y. Suda. "Latest Situation and Future of Low-Temperature Plasma Processing". Sen'i Kikai Gakkaishi (Journal of the Textile Machinery Society of Japan) 38, n.º 3 (1985): P135—P143. http://dx.doi.org/10.4188/transjtmsj.38.3_p135.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Reed, Michael L. y James D. Plummer. "Si‐SiO2interface trap production by low‐temperature thermal processing". Applied Physics Letters 51, n.º 7 (17 de agosto de 1987): 514–16. http://dx.doi.org/10.1063/1.98383.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Aleksandrov, P. V., A. S. Medvedev, A. A. Kadirov y V. A. Imideev. "Processing molybdenum concentrates using low-temperature oxidizing-chlorinating roasting". Russian Journal of Non-Ferrous Metals 55, n.º 2 (marzo de 2014): 114–19. http://dx.doi.org/10.3103/s1067821214020011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Shavaleev, M. R., N. M. Barbin, D. I. Terentyev, M. P. Dal’kov y S. G. Alexeev. "Reactor graphite processing in low-temperature gas-discharge plasma". Journal of Physics: Conference Series 1370 (noviembre de 2019): 012028. http://dx.doi.org/10.1088/1742-6596/1370/1/012028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Jiang, Hongjin y C. P. Wong. "Low Processing Temperature of Lead-Free Solder Interconnects [Nanopackaging". IEEE Nanotechnology Magazine 4, n.º 2 (junio de 2010): 20–23. http://dx.doi.org/10.1109/mnano.2010.936604.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Gonzalez-Leon, Juan A., Metin H. Acar, Sang-Woog Ryu, Anne-Valérie G. Ruzette y Anne M. Mayes. "Low-temperature processing of ‘baroplastics’ by pressure-induced flow". Nature 426, n.º 6965 (noviembre de 2003): 424–28. http://dx.doi.org/10.1038/nature02140.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Mandeljc, Mira, Marija Kosec, Barbara Malič y Zoran Samardzija. "Low temperature processing of lanthanum doped PZT thin films". Integrated Ferroelectrics 30, n.º 1-4 (octubre de 2000): 149–56. http://dx.doi.org/10.1080/10584580008222263.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Joshi, Pooran, A. Tolis Voutsas y John Hartzell. "Low Temperature Processing of Si-Based Dielectric Thin Films". ECS Transactions 35, n.º 4 (16 de diciembre de 2019): 241–57. http://dx.doi.org/10.1149/1.3572287.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Li, Hong, Gaoling Zhao, Zhijun Chen, Bin Song y Gaorong Han. "TiO2-Ag Nanocomposites by Low-Temperature Sol-Gel Processing". Journal of the American Ceramic Society 93, n.º 2 (febrero de 2010): 445–49. http://dx.doi.org/10.1111/j.1551-2916.2009.03441.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Eom, Jung-Hye y Young-Wook Kim. "Low-Temperature Processing of Silicon Oxycarbide-Bonded Silicon Carbide". Journal of the American Ceramic Society 93, n.º 9 (24 de marzo de 2010): 2463–66. http://dx.doi.org/10.1111/j.1551-2916.2010.03812.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Carlbaum, N. y P. Engdahl. "Wear Resistant PM Steel by Low Temperature Processing Route". Powder Metallurgy 35, n.º 2 (enero de 1992): 137–40. http://dx.doi.org/10.1179/pom.1992.35.2.137.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Bulat, E. S., M. Tabasky, B. Tweed, C. Herrick, S. Hankin, N. J. Lewis, D. Oblas y T. Fitzgerald. "Fabrication of waveguides using low‐temperature plasma processing techniques". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 11, n.º 4 (julio de 1993): 1268–74. http://dx.doi.org/10.1116/1.578538.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Ee, L. S., J. Wang, S. C. Ng y L. M. Gan. "Low temperature synthesis of PZT powders via microemulsion processing". Materials Research Bulletin 33, n.º 7 (julio de 1998): 1045–55. http://dx.doi.org/10.1016/s0025-5408(98)00069-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Mitzi, David B., David R. Medeiros y Patrick W. DeHaven. "Low-Temperature Melt Processing of Organic−Inorganic Hybrid Films". Chemistry of Materials 14, n.º 7 (julio de 2002): 2839–41. http://dx.doi.org/10.1021/cm020264f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Chinn, Richard E., Michael J. Haun, Chan Young Kim y David B. Price. "Low-Temperature Transient Glass-Phase Processing of Monoclinic SrAl2Si2O8". Journal of the American Ceramic Society 81, n.º 9 (20 de enero de 2005): 2285–93. http://dx.doi.org/10.1111/j.1151-2916.1998.tb02623.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Pongsuttiyakorn, Thadchapong, Pachareeporn trusphimai, Pitikhate Sooraksa y Pimpen Pornchaloempong. "Effects of low temperature drying processing on longan fruit". MATEC Web of Conferences 192 (2018): 03024. http://dx.doi.org/10.1051/matecconf/201819203024.

Texto completo
Resumen
In this study, the single-stage drying in tray dryer at air temperatures of 40, 50, 60, 70 and 80°C is modelled and investigated. The longan fruits, E-dor variety, are peeled and seeded before testing. The drying rate is significantly influenced by the drying techniques and temperatures. Drying rats are initialized adjustment constant rate periods at 60 70 and 80°C. The rate of moisture removal is rapidly changed drastically during the falling rate period. The Midilli model with high R2 and low χ2 and RMSE is the most suitable model for predictability of longan drying. Variation rates of quality of the water activity, the shrinkage, and the browning index are also reported.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Urrutia Benet, G., O. Schlüter y D. Knorr. "High pressure–low temperature processing. Suggested definitions and terminology". Innovative Food Science & Emerging Technologies 5, n.º 4 (diciembre de 2004): 413–27. http://dx.doi.org/10.1016/j.ifset.2004.06.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Ohno, Tomoya, Yasunori Gotoh, Naonori Sakamoto, Naoki Wakiya, Takanori Kiguchi, Takeshi Matsuda y Hisao Suzuki. "Low temperature processing of alkoxide-derived PMN thin films". IOP Conference Series: Materials Science and Engineering 30 (15 de febrero de 2012): 012002. http://dx.doi.org/10.1088/1757-899x/30/1/012002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

MALIČ, Barbara y Hisao SUZUKI. "Low-temperature processing of solution-derived ferroelectric thin films". Journal of the Ceramic Society of Japan 122, n.º 1421 (2014): 1–8. http://dx.doi.org/10.2109/jcersj2.122.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Jiang, C. Y., W. L. Koh, M. Y. Leung, S. Y. Chiam, J. S. Wu y J. Zhang. "Low temperature processing solid-state dye sensitized solar cells". Applied Physics Letters 100, n.º 11 (12 de marzo de 2012): 113901. http://dx.doi.org/10.1063/1.3693399.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Borglum, Brian P., John M. Bukowski, J. Francis Young y Relva C. Buchanan. "Low-Temperature Synthesis of Hexagonal Anorthite via Hydrothermal Processing". Journal of the American Ceramic Society 76, n.º 5 (mayo de 1993): 1354–56. http://dx.doi.org/10.1111/j.1151-2916.1993.tb03765.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Rodrigues, Alexandre, Deb Nabankur, Loic Hilliou, Julio Viana, David G. Bucknall y Gabriel Bernardo. "Low temperature solid state processing of pure P3HT fibers". AIP Advances 3, n.º 5 (mayo de 2013): 052116. http://dx.doi.org/10.1063/1.4806764.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

DENG, S. S., J. WEI, C. M. TAN, M. L. NAI, W. B. YU y H. XIE. "LOW TEMPERATURE SILICON WAFER BONDING BY SOL-GEL PROCESSING". International Journal of Computational Engineering Science 04, n.º 03 (septiembre de 2003): 655–58. http://dx.doi.org/10.1142/s1465876303001976.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía