Artículos de revistas sobre el tema "Low temperature photoluminescence"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Low temperature photoluminescence.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Low temperature photoluminescence".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Lacroix, Y., C. A. Tran, S. P. Watkins y M. L. W. Thewalt. "Low‐temperature photoluminescence of epitaxial InAs". Journal of Applied Physics 80, n.º 11 (diciembre de 1996): 6416–24. http://dx.doi.org/10.1063/1.363660.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kini, R. N., A. Mascarenhas, R. France y A. J. Ptak. "Low temperature photoluminescence from dilute bismides". Journal of Applied Physics 104, n.º 11 (diciembre de 2008): 113534. http://dx.doi.org/10.1063/1.3041479.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Misiewicz, J. "The low temperature photoluminescence in Zn3P2". Physica Status Solidi (a) 107, n.º 1 (16 de mayo de 1988): K65—K68. http://dx.doi.org/10.1002/pssa.2211070161.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kim, Soo-Yong. "A Study on Phosphor Synthetic and Low Temperature Photoluminescence Spectrum". Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 24, n.º 4 (30 de abril de 2010): 10–16. http://dx.doi.org/10.5207/jieie.2010.24.4.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kasai, Jun‐ichi y Yoshifumi Katayama. "Low‐temperature micro‐photoluminescence using confocal microscopy". Review of Scientific Instruments 66, n.º 7 (julio de 1995): 3738–43. http://dx.doi.org/10.1063/1.1145431.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Pickin, William. "Low-temperature photoluminescence spectrum of amorphous semiconductors". Physical Review B 40, n.º 17 (15 de diciembre de 1989): 12030–33. http://dx.doi.org/10.1103/physrevb.40.12030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kovalev, D., J. Diener, H. Heckler, G. Polisski, N. Künzner, F. Koch, Al L. Efros y M. Rosen. "Low-temperature photoluminescence upconversion in porous Si". Physical Review B 61, n.º 23 (15 de junio de 2000): 15841–47. http://dx.doi.org/10.1103/physrevb.61.15841.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Churmanov, V. N., N. B. Gruzdev, V. I. Sokolov, V. A. Pustovarov, V. Yu Ivanov y N. A. Mironova-Ulmane. "Low-temperature photoluminescence in NixMg1−xO nanocrystals". Low Temperature Physics 41, n.º 3 (marzo de 2015): 233–35. http://dx.doi.org/10.1063/1.4915911.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Feng, W., F. Chen, Q. Huang y J. M. Zhou. "Photoluminescence of low-temperature multiple quantum wells". Journal of Crystal Growth 175-176 (mayo de 1997): 1173–77. http://dx.doi.org/10.1016/s0022-0248(96)01041-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lan, Y. C., X. L. Chen, Y. G. Cao, Y. P. Xu, L. D. Xun, T. Xu y J. K. Liang. "Low-temperature synthesis and photoluminescence of AlN". Journal of Crystal Growth 207, n.º 3 (diciembre de 1999): 247–50. http://dx.doi.org/10.1016/s0022-0248(99)00448-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Bezrodna, T., V. Melnyk, V. Vorobjev y G. Puchkovska. "Low-temperature photoluminescence of 5CB liquid crystal". Journal of Luminescence 130, n.º 7 (julio de 2010): 1134–41. http://dx.doi.org/10.1016/j.jlumin.2010.02.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

GASANLY, N. M. "Low-temperature photoluminescence in CuIn5S8 single crystals". Pramana 86, n.º 6 (13 de febrero de 2016): 1383–90. http://dx.doi.org/10.1007/s12043-015-1181-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Pal, S., A. Sarkar, P. Kumar, D. Kanjilal, T. Rakshit, S. K. Ray y D. Jana. "Low temperature photoluminescence from disordered granular ZnO". Journal of Luminescence 169 (enero de 2016): 326–33. http://dx.doi.org/10.1016/j.jlumin.2015.09.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Cho, Hak Dong, Im Taek Yoon, Kwun Bum Chung, Deuk Young Kim, Tae Won Kang y Sh U. Yuldashev. "Low-temperature photoluminescence of WO 3 nanoparticles". Journal of Luminescence 195 (marzo de 2018): 344–47. http://dx.doi.org/10.1016/j.jlumin.2017.11.053.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Bodnar’, I. V. y M. V. Yakushev. "Low-temperature photoluminescence in AgGaSe2 single crystals". Technical Physics 49, n.º 3 (marzo de 2004): 335–37. http://dx.doi.org/10.1134/1.1688420.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Posavec, T., S. Nepal y S. V. Dordevic. "Low Temperature Photoluminescence in Some Common Polymers". Materials Performance and Characterization 7, n.º 1 (2 de mayo de 2018): 20170138. http://dx.doi.org/10.1520/mpc20170138.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Andreev, B. A., N. A. Sobolev, Yu A. Nikolaev, D. I. Kuritsin, M. I. Makovijchuk y E. O. Parshin. "Low-temperature photoluminescence in holmium-doped silicon". Semiconductors 33, n.º 4 (abril de 1999): 407–9. http://dx.doi.org/10.1134/1.1187703.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Tronc, P., B. Reid, H. Mani, R. MacIejko, A. N. Titkov, J. L. Lazzari y C. Alibert. "Low Temperature Photoluminescence Spectra of Ga0.77In0.23As0.19SB0.81 Compounds". physica status solidi (b) 180, n.º 2 (1 de diciembre de 1993): K87—K91. http://dx.doi.org/10.1002/pssb.2221800240.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Liu, Yichun y Yanhong Tong. "Growth and Optical Properties of ZnO Low-Dimensional Nanostructures". Journal of Nanoscience and Nanotechnology 8, n.º 3 (1 de marzo de 2008): 1101–9. http://dx.doi.org/10.1166/jnn.2008.18158.

Texto completo
Resumen
Recent studies on the growth of ZnO nanostructures and their optical properties were reviewed. Using different methods, a variety of ZnO nanostructures, including quantum dots nanotowers, nanotubes, nanorods, nanowires, and nanosheets, displaying zero, one, and two dimensions, have been synthesized. The growth of ZnO low-dimensional nanostructures has been demonstrated. Their optical properties have been studied by means of room-temperature photoluminescence spectra, low-temperature photoluminescence spectra, temperature-dependent photoluminescence spectra, and pressure-dependent photoluminescence spectra. The optical properties can be adjusted by the surface features of ZnO low-dimensional nanostructures. The strong exciton emission has been observed in some nanostructures, showing promising potential in nanodevice applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Sagara, Yoshimitsu, Tatsuya Muramatsu y Nobuyuki Tamaoki. "A 1,6-Diphenylpyrene-Based, Photoluminescent Cyclophane Showing a Nematic Liquid-Crystalline Phase at Room Temperature". Crystals 9, n.º 2 (11 de febrero de 2019): 92. http://dx.doi.org/10.3390/cryst9020092.

Texto completo
Resumen
Photoluminescent nematic liquid crystals have been an attractive research target for decades, because of their potential applications in optoelectrical devices. Integration of luminescent motifs into cyclic structures is a promising approach to induce low-ordered liquid-crystalline phases, even though relatively large and rigid luminophores are used as emitters. Here, we demonstrate a 1,6-diphenylpyrene-based, unsymmetric cyclophane showing a stable nematic phase at room temperature and exhibiting strong photoluminescence from the condensed state. The observed sky-blue photoluminescence was dominated by the emission species ascribed to assembled luminophores rather than monomers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kitada, Nobuo y Takayuki Ishida. "Polymeric one- and two-dimensional copper(i) iodide complexes showing photoluminescence tunable by azaaromatic ligands". CrystEngComm 16, n.º 34 (2014): 8035–40. http://dx.doi.org/10.1039/c4ce01231c.

Texto completo
Resumen
Photoluminescent properties of four low-dimensional [(CuI)xL]n complexes were investigated in the solid state at ambient temperature. A photoluminescence quantum yield of 73% was recorded for [(CuI)2(46dmpm)]n.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Tian, Peng, Chong Qing Huang, Wen Hua Luo y Jing Liu. "MOCVD Growth and Optical Properties of Self-Assembled InAs/GaAs Quantum Dots". Advanced Materials Research 571 (septiembre de 2012): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amr.571.265.

Texto completo
Resumen
InAs/GaAs quantum dots structures are grown by meta-organic chemical vapor deposition. The effects of growth temperatures on the structural and optical properties of quantum dots are investigated by the atomic force microscopy and photoluminescence. An areal density of 9.3×109cm2 and a strongly enhanced photoluminescence intensity are obtained at the temperature of 505°C, furthermore, the low and high growth temperature tend to form coalescent islands and decrease the intensity of photoluminescence spectra.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Hwang, Seongmi, Youngmin Choi y Beyong-Hwan Ryu. "Low Temperature Synthesis of Colloidal CdSe Quantum Dots". Journal of Nanoscience and Nanotechnology 7, n.º 11 (1 de noviembre de 2007): 3780–83. http://dx.doi.org/10.1166/jnn.2007.026.

Texto completo
Resumen
In this study, the CdSe nanocrystals were prepared in phenyl ether and octyl amine to investigate the variations of their size, bandgap energy, and photoluminescence with growth time and temperature. The sizes of the CdSe nanocrystals were measured using High Resolution Transmission Electron Microscopy (HRTEM), and found to be nearly monodisperse for relatively low growth temperature, 130 °C. Their optic properties were characterized by photoluminescence measurements, which showed that the colors of the nanocrystals could be controlled. The bandgap energies of the nanocrystals were calculated theoretically and found to be in accord with quantum confinement theory. This synthetic method requires only a cheap solvent and offers good reproducibility at a lower price.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Hwang, Seongmi, Youngmin Choi y Beyong-Hwan Ryu. "Low Temperature Synthesis of Colloidal CdSe Quantum Dots". Journal of Nanoscience and Nanotechnology 7, n.º 11 (1 de noviembre de 2007): 3780–83. http://dx.doi.org/10.1166/jnn.2007.18071.

Texto completo
Resumen
In this study, the CdSe nanocrystals were prepared in phenyl ether and octyl amine to investigate the variations of their size, bandgap energy, and photoluminescence with growth time and temperature. The sizes of the CdSe nanocrystals were measured using High Resolution Transmission Electron Microscopy (HRTEM), and found to be nearly monodisperse for relatively low growth temperature, 130 °C. Their optic properties were characterized by photoluminescence measurements, which showed that the colors of the nanocrystals could be controlled. The bandgap energies of the nanocrystals were calculated theoretically and found to be in accord with quantum confinement theory. This synthetic method requires only a cheap solvent and offers good reproducibility at a lower price.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Hatayama, Tomoaki, Anne Henry, Hiroshi Yano y Takashi Fuyuki. "Low-temperature photoluminescence of 8H-SiC homoepitaxial layer". Japanese Journal of Applied Physics 55, n.º 2 (20 de enero de 2016): 020303. http://dx.doi.org/10.7567/jjap.55.020303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Park, Jin Won, Dong Jae Lee, Dong Hwan Kim y Yunsang Lee. "Low-temperature Photoluminescence for Polycrystalline SrZrO3 and SrHfO3". Journal of the Korean Physical Society 58, n.º 2 (15 de febrero de 2011): 316–20. http://dx.doi.org/10.3938/jkps.58.316.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

James, R. B., X. J. Bao, T. E. Schlesinger, J. M. Markakis, A. Y. Cheng y C. Ortale. "Low‐temperature photoluminescence studies of mercuric‐iodide photodetectors". Journal of Applied Physics 66, n.º 6 (15 de septiembre de 1989): 2578–84. http://dx.doi.org/10.1063/1.344222.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Lee, Jaesun y N. C. Giles. "Low‐temperature photoluminescence from bulk CdTe and Cd0.967Zn0.033Te". Journal of Applied Physics 78, n.º 2 (15 de julio de 1995): 1191–95. http://dx.doi.org/10.1063/1.360356.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Abay, B., H. Efeoglu, Y. K. Yogurtçu y M. Alieva. "Low-temperature visible photoluminescence spectra of Tl2GaInSe4layered crystals". Semiconductor Science and Technology 16, n.º 9 (10 de agosto de 2001): 745–49. http://dx.doi.org/10.1088/0268-1242/16/9/302.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Huang, Jia-Yao, Lin Shang, Shu-Fang Ma, Bin Han, Guo-Dong Wei, Qing-Ming Liu, Xiao-Dong Hao, Heng-Sheng Shan y Bing-She Xu. "Low temperature photoluminescence study of GaAs defect states". Chinese Physics B 29, n.º 1 (enero de 2020): 010703. http://dx.doi.org/10.1088/1674-1056/ab5fb8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

ZHU, DELIANG, QIANWANG CHEN y YUHENG ZHANG. "STABLE PHOTOLUMINESCENCE IN LOW-TEMPERATURE ANNEALED POROUS SILICON". Modern Physics Letters B 15, n.º 24 (20 de octubre de 2001): 1077–85. http://dx.doi.org/10.1142/s0217984901002920.

Texto completo
Resumen
The low-temperature annealing of porous silicon (PS) has been studied in ambient air and vacuum. After air-annealed samples were again stored in air for a period of time, their luminescence exhibited improved stability in comparison to fresh samples. But their luminescence intensity is much weaker than that of fresh samples, and their peak position moves to shorter wavelengths. A stoichiometric oxide SiO2 can easily be formed on PS surfaces if the annealing is performed in vacuum. The SiO2 layer prevents nc-Si from further oxidation and guarantees the luminescence intensity and that peak position remains unchanged with air storage.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Gasanly, N. M. y A. Aydinli. "Low-temperature photoluminescence spectra of InS single crystals". Solid State Communications 101, n.º 11 (marzo de 1997): 797–99. http://dx.doi.org/10.1016/s0038-1098(96)00704-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Kim, Seong‐Il, Moo‐Sung Kim, Yong Kim, Kyung Sook Eom, Suk‐Ki Min y Choochon Lee. "Low temperature photoluminescence characteristics of carbon doped GaAs". Journal of Applied Physics 73, n.º 9 (mayo de 1993): 4703–5. http://dx.doi.org/10.1063/1.352740.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Aydınlı, A., N. M. Gasanly y K. Gökşen. "Low-temperature photoluminescence study of GaS0.5Se0.5 layered crystals". Materials Research Bulletin 36, n.º 10 (julio de 2001): 1823–32. http://dx.doi.org/10.1016/s0025-5408(01)00635-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Shinde, Aparna, Richa Gahlaut y Shailaja Mahamuni. "Low-Temperature Photoluminescence Studies of CsPbBr3 Quantum Dots". Journal of Physical Chemistry C 121, n.º 27 (29 de junio de 2017): 14872–78. http://dx.doi.org/10.1021/acs.jpcc.7b02982.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Hudait, M. K., P. Modak, K. S. R. K. Rao y S. B. Krupanidhi. "Low temperature photoluminescence properties of Zn-doped GaAs". Materials Science and Engineering: B 57, n.º 1 (diciembre de 1998): 62–70. http://dx.doi.org/10.1016/s0921-5107(98)00259-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Gasanly, N. M., A. Aydinli, A. Bek y I. Yilmaz. "Low-temperature photoluminescence spectra of layered semiconductor TlGaS2". Solid State Communications 105, n.º 1 (enero de 1998): 21–24. http://dx.doi.org/10.1016/s0038-1098(97)10027-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Nikitin, T., S. Kopyl, V. Ya Shur, Y. V. Kopelevich y A. L. Kholkin. "Low-temperature photoluminescence in self-assembled diphenylalanine microtubes". Physics Letters A 380, n.º 18-19 (abril de 2016): 1658–62. http://dx.doi.org/10.1016/j.physleta.2016.02.043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Kalem, S., T. Curtis, W. B. de Boer y G. E. Stillman. "Low-temperature photoluminescence in SiGe single quantum wells". Applied Physics A: Materials Science & Processing 66, n.º 1 (1 de enero de 1998): 23–28. http://dx.doi.org/10.1007/s003390050632.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Gasanly, N. M. "Low-temperature photoluminescence in layered structured TlGa0.5In0.5Se2 crystals". Journal of Alloys and Compounds 547 (enero de 2013): 33–36. http://dx.doi.org/10.1016/j.jallcom.2012.08.134.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Tu, Ya Fang y Qiu Ming Fu. "Low Temperature Synthesis and Characterization of Flower-Like ZnO Nanostructures". Advanced Materials Research 664 (febrero de 2013): 605–8. http://dx.doi.org/10.4028/www.scientific.net/amr.664.605.

Texto completo
Resumen
Flower-like ZnO nanostructures have been synthesized via solution process using zinc nitrate and sodium hydroxide at very low temperature of 70 °C in 1h. The structure, morphology and optical properties of the product were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. The flower-like ZnO nanostructures were composed of uniform nanorods, they were well crystallized with a hexagonal wurtzite structure, and showed a strong ultraviolet emission at 385 nm and a weak and broad yellow emission in the photoluminescence spectrum.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Byrne, Daragh, Aidan Cowley, Nick Bennett y Enda McGlynn. "The luminescent properties of CuAlO2". J. Mater. Chem. C 2, n.º 37 (2014): 7859–68. http://dx.doi.org/10.1039/c4tc01311e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Morales, A. Escobedo, R. Aceves, U. Pal y J. Z. Zhang. "Low Temperature Photoluminescence Characteristics of Chemically Synthesized Indium Doped Zinc Oxide Nanostructures". Journal of Nanoscience and Nanotechnology 8, n.º 12 (1 de diciembre de 2008): 6538–44. http://dx.doi.org/10.1166/jnn.2008.18422.

Texto completo
Resumen
Photoluminescence (PL) emission and excitation (EPL) spectra of un-doped and indium (1%) doped 1D zinc oxide nanostructures are studied at different temperatures. The nanostructures reveal a blue emission band attributed to localized donor states. Indium doping enhances the blue emission. While at low temperatures (<50 K) PL spectra are dominated by the emission attributed to the recombination of excitons bound to neutral donors (D0,X), at higher temperatures (>100 K), defect related emissions in the visible range dominate over the excitonic emission. Temperature dependence measurements on the doped sample reveal that (D0,X) emission energies obey the Varshni's formula with fitting constants α = 8.4±0.3 × 10−4 eV/K and β = 650±40 K. The (D0,X) emission intensity decays exponentially with temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Xia, Yijie, Shuaishuai Du, Pengju Huang, Luchao Wu, Siyu Yan, Weizhi Wang y Gaoyu Zhong. "Temperature-Dependent Photoluminescence of Manganese Halide with Tetrahedron Structure in Anti-Perovskites". Nanomaterials 11, n.º 12 (6 de diciembre de 2021): 3310. http://dx.doi.org/10.3390/nano11123310.

Texto completo
Resumen
The temperature-dependent photoluminescence (PL) properties of an anti-perovskite [MnBr4]BrCs3 sample in the temperature range of 78–500 K are studied in the present work. This material exhibits unique performance which is different from a typical perovskite. Experiments showed that from room temperature to 78 K, the luminous intensity increased as the temperature decreased. From room temperature to 500 K, the photoluminescence intensity gradually decreased with increasing temperature. Experiments with varying temperatures repeatedly showed that the emission wavelength was very stable. Based on the above-mentioned phenomenon of the changing photoluminescence under different temperatures, the mechanism is deduced from the temperature-dependent characteristics of excitons, and the experimental results are explained on the basis of the types of excitons with different energy levels and different recombination rates involved in the steady-state PL process. The results show that in the measured temperature range of 78–500 K, the steady-state PL of [MnBr4]BrCs3 had three excitons with different energy levels and recombination rates participating. The involved excitons with the highest energy level not only had a high radiative recombination rate, but a high non-radiative recombination rate as well. The excitons at the second-highest energy level had a similar radiative recombination rate to the lowest energy level excitons and a had high non-radiative recombination rate. These excitons made the photoluminescence gradually decrease with increasing temperature. This may be the reason for this material’s high photoluminescence efficiency and low electroluminescence efficiency.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Dissanayake, A., J. Y. Lin, H. X. Jiang, Z. J. Yu y J. H. Edgar. "Low‐temperature epitaxial growth and photoluminescence characterization of GaN". Applied Physics Letters 65, n.º 18 (31 de octubre de 1994): 2317–19. http://dx.doi.org/10.1063/1.112729.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Sokolov, V. I., V. A. Pustovarov, N. B. Gruzdev, P. S. Sokolov y A. N. Baranov. "Low-temperature photoluminescence of CoO excited by synchrotron radiation". Optics and Spectroscopy 116, n.º 5 (mayo de 2014): 790–92. http://dx.doi.org/10.1134/s0030400x14050233.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Zhai, Y. J., X. L. Chen, J. H. Li, X. Y. Chu y Y. Zhang. "Low-Temperature Photoluminescence Properties of the Monolayer MoS2 Nanomaterals". Integrated Ferroelectrics 212, n.º 1 (11 de noviembre de 2020): 147–55. http://dx.doi.org/10.1080/10584587.2020.1819043.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Valakh, M. Ya, N. V. Vuychik, V. V. Strelchuk, S. V. Sorokin, T. V. Shubina, S. V. Ivanov y P. S. Kop’ev. "Low-temperature anti-Stokes photoluminescence in CdSe/ZnSe nanostructures". Semiconductors 37, n.º 6 (junio de 2003): 699–704. http://dx.doi.org/10.1134/1.1582538.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Zhang, Zengxing, Jianxiong Wang, Huajun Yuan, Yan Gao, Dongfang Liu, Li Song, Yanjuan Xiang et al. "Low-Temperature Growth and Photoluminescence Property of ZnS Nanoribbons". Journal of Physical Chemistry B 109, n.º 39 (octubre de 2005): 18352–55. http://dx.doi.org/10.1021/jp052199d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

De Vittorio, M., A. Melcarne, R. Rinaldi y R. Cingolani. "Low temperature tool for photoluminescence mapping with submicron resolution". Review of Scientific Instruments 72, n.º 6 (junio de 2001): 2610–12. http://dx.doi.org/10.1063/1.1369631.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía