Artículos de revistas sobre el tema "Low-Rank matrix approximation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Low-Rank matrix approximation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ting Liu, Ting Liu, Mingjian Sun Mingjian Sun, Naizhang Feng Naizhang Feng, Minghua Wang Minghua Wang, Deying Chen Deying Chen y and Yi Shen and Yi Shen. "Sparse photoacoustic microscopy based on low-rank matrix approximation". Chinese Optics Letters 14, n.º 9 (2016): 091701–91705. http://dx.doi.org/10.3788/col201614.091701.
Texto completoParekh, Ankit y Ivan W. Selesnick. "Enhanced Low-Rank Matrix Approximation". IEEE Signal Processing Letters 23, n.º 4 (abril de 2016): 493–97. http://dx.doi.org/10.1109/lsp.2016.2535227.
Texto completoFomin, Fedor V., Petr A. Golovach y Fahad Panolan. "Parameterized low-rank binary matrix approximation". Data Mining and Knowledge Discovery 34, n.º 2 (2 de enero de 2020): 478–532. http://dx.doi.org/10.1007/s10618-019-00669-5.
Texto completoFomin, Fedor V., Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan y Saket Saurabh. "Approximation Schemes for Low-rank Binary Matrix Approximation Problems". ACM Transactions on Algorithms 16, n.º 1 (11 de enero de 2020): 1–39. http://dx.doi.org/10.1145/3365653.
Texto completoZhenyue Zhang y Keke Zhao. "Low-Rank Matrix Approximation with Manifold Regularization". IEEE Transactions on Pattern Analysis and Machine Intelligence 35, n.º 7 (julio de 2013): 1717–29. http://dx.doi.org/10.1109/tpami.2012.274.
Texto completoXu, An-Bao y Dongxiu Xie. "Low-rank approximation pursuit for matrix completion". Mechanical Systems and Signal Processing 95 (octubre de 2017): 77–89. http://dx.doi.org/10.1016/j.ymssp.2017.03.024.
Texto completoBarlow, Jesse L. y Hasan Erbay. "Modifiable low-rank approximation to a matrix". Numerical Linear Algebra with Applications 16, n.º 10 (octubre de 2009): 833–60. http://dx.doi.org/10.1002/nla.651.
Texto completoJia, Yuheng, Hui Liu, Junhui Hou y Qingfu Zhang. "Clustering Ensemble Meets Low-rank Tensor Approximation". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 9 (18 de mayo de 2021): 7970–78. http://dx.doi.org/10.1609/aaai.v35i9.16972.
Texto completoTropp, Joel A., Alp Yurtsever, Madeleine Udell y Volkan Cevher. "Practical Sketching Algorithms for Low-Rank Matrix Approximation". SIAM Journal on Matrix Analysis and Applications 38, n.º 4 (enero de 2017): 1454–85. http://dx.doi.org/10.1137/17m1111590.
Texto completoLiu, Huafeng, Liping Jing, Yuhua Qian y Jian Yu. "Adaptive Local Low-rank Matrix Approximation for Recommendation". ACM Transactions on Information Systems 37, n.º 4 (10 de diciembre de 2019): 1–34. http://dx.doi.org/10.1145/3360488.
Texto completoAmini, Arash, Amin Karbasi y Farokh Marvasti. "Low-Rank Matrix Approximation Using Point-Wise Operators". IEEE Transactions on Information Theory 58, n.º 1 (enero de 2012): 302–10. http://dx.doi.org/10.1109/tit.2011.2167714.
Texto completoHou, Junhui, Lap-Pui Chau, Nadia Magnenat-Thalmann y Ying He. "Sparse Low-Rank Matrix Approximation for Data Compression". IEEE Transactions on Circuits and Systems for Video Technology 27, n.º 5 (mayo de 2017): 1043–54. http://dx.doi.org/10.1109/tcsvt.2015.2513698.
Texto completoZhang, Zhenyue y Lixin Wu. "Optimal low-rank approximation to a correlation matrix". Linear Algebra and its Applications 364 (mayo de 2003): 161–87. http://dx.doi.org/10.1016/s0024-3795(02)00551-7.
Texto completoGillis, Nicolas y Yaroslav Shitov. "Low-rank matrix approximation in the infinity norm". Linear Algebra and its Applications 581 (noviembre de 2019): 367–82. http://dx.doi.org/10.1016/j.laa.2019.07.017.
Texto completoSong, Guang-Jing y Michael K. Ng. "Nonnegative low rank matrix approximation for nonnegative matrices". Applied Mathematics Letters 105 (julio de 2020): 106300. http://dx.doi.org/10.1016/j.aml.2020.106300.
Texto completovan der Veen, Alle-Jan. "A Schur Method for Low-Rank Matrix Approximation". SIAM Journal on Matrix Analysis and Applications 17, n.º 1 (enero de 1996): 139–60. http://dx.doi.org/10.1137/s0895479893261340.
Texto completoSun, Dongxia y Lihong Zhi. "Structured Low Rank Approximation of a Bezout Matrix". Mathematics in Computer Science 1, n.º 2 (5 de octubre de 2007): 427–37. http://dx.doi.org/10.1007/s11786-007-0014-6.
Texto completoMena, Hermann, Alexander Ostermann, Lena-Maria Pfurtscheller y Chiara Piazzola. "Numerical low-rank approximation of matrix differential equations". Journal of Computational and Applied Mathematics 340 (octubre de 2018): 602–14. http://dx.doi.org/10.1016/j.cam.2018.01.035.
Texto completoPersson, David y Daniel Kressner. "Randomized Low-Rank Approximation of Monotone Matrix Functions". SIAM Journal on Matrix Analysis and Applications 44, n.º 2 (8 de junio de 2023): 894–918. http://dx.doi.org/10.1137/22m1523923.
Texto completoSoto-Quiros, Pablo. "Error analysis of the generalized low-rank matrix approximation". Electronic Journal of Linear Algebra 37 (23 de julio de 2021): 544–48. http://dx.doi.org/10.13001/ela.2021.5961.
Texto completoZhang, Jiani, Jennifer Erway, Xiaofei Hu, Qiang Zhang y Robert Plemmons. "Randomized SVD Methods in Hyperspectral Imaging". Journal of Electrical and Computer Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/409357.
Texto completoZhu, E., M. Xu y D. Pi. "A Novel Robust Principal Component Analysis Algorithm of Nonconvex Rank Approximation". Mathematical Problems in Engineering 2020 (30 de septiembre de 2020): 1–17. http://dx.doi.org/10.1155/2020/9356935.
Texto completoFernández-Val, Iván, Hugo Freeman y Martin Weidner. "Low-rank approximations of nonseparable panel models". Econometrics Journal 24, n.º 2 (18 de marzo de 2021): C40—C77. http://dx.doi.org/10.1093/ectj/utab007.
Texto completoChen, Zhilong, Peng Wang y Detong Zhu. "Approximation Conjugate Gradient Method for Low-Rank Matrix Recovery". Symmetry 16, n.º 5 (2 de mayo de 2024): 547. http://dx.doi.org/10.3390/sym16050547.
Texto completoChang, Xiangyu, Yan Zhong, Yao Wang y Shaobo Lin. "Unified Low-Rank Matrix Estimate via Penalized Matrix Least Squares Approximation". IEEE Transactions on Neural Networks and Learning Systems 30, n.º 2 (febrero de 2019): 474–85. http://dx.doi.org/10.1109/tnnls.2018.2844242.
Texto completoNie, Feiping, Zhanxuan Hu y Xuelong Li. "Matrix Completion Based on Non-Convex Low-Rank Approximation". IEEE Transactions on Image Processing 28, n.º 5 (mayo de 2019): 2378–88. http://dx.doi.org/10.1109/tip.2018.2886712.
Texto completoZheng, Jianwei, Mengjie Qin, Xiaolong Zhou, Jiafa Mao y Hongchuan Yu. "Efficient Implementation of Truncated Reweighting Low-Rank Matrix Approximation". IEEE Transactions on Industrial Informatics 16, n.º 1 (enero de 2020): 488–500. http://dx.doi.org/10.1109/tii.2019.2916986.
Texto completoHorasan, Fahrettin, Hasan Erbay, Fatih Varçın y Emre Deniz. "Alternate Low-Rank Matrix Approximation in Latent Semantic Analysis". Scientific Programming 2019 (3 de febrero de 2019): 1–12. http://dx.doi.org/10.1155/2019/1095643.
Texto completoPitaval, Renaud-Alexandre, Wei Dai y Olav Tirkkonen. "Convergence of Gradient Descent for Low-Rank Matrix Approximation". IEEE Transactions on Information Theory 61, n.º 8 (agosto de 2015): 4451–57. http://dx.doi.org/10.1109/tit.2015.2448695.
Texto completoPei Chen. "Heteroscedastic Low-Rank Matrix Approximation by the Wiberg Algorithm". IEEE Transactions on Signal Processing 56, n.º 4 (abril de 2008): 1429–39. http://dx.doi.org/10.1109/tsp.2007.909353.
Texto completoDuan, Xuefeng, Jiaofen Li, Qingwen Wang y Xinjun Zhang. "Low rank approximation of the symmetric positive semidefinite matrix". Journal of Computational and Applied Mathematics 260 (abril de 2014): 236–43. http://dx.doi.org/10.1016/j.cam.2013.09.080.
Texto completoMohd Sagheer, Sameera V. y Sudhish N. George. "Ultrasound image despeckling using low rank matrix approximation approach". Biomedical Signal Processing and Control 38 (septiembre de 2017): 236–49. http://dx.doi.org/10.1016/j.bspc.2017.06.011.
Texto completoLuo, Yu y Jie Ling. "Single-image de-raining using low-rank matrix approximation". Neural Computing and Applications 32, n.º 11 (7 de junio de 2019): 7503–14. http://dx.doi.org/10.1007/s00521-019-04271-0.
Texto completoMatveev, Sergey y Stanislav Budzinskiy. "Sketching for a low-rank nonnegative matrix approximation: Numerical study". Russian Journal of Numerical Analysis and Mathematical Modelling 38, n.º 2 (1 de marzo de 2023): 99–114. http://dx.doi.org/10.1515/rnam-2023-0009.
Texto completoLi, Chi-Kwong y Gilbert Strang. "An elementary proof of Mirsky's low rank approximation theorem". Electronic Journal of Linear Algebra 36, n.º 36 (14 de octubre de 2020): 694–97. http://dx.doi.org/10.13001/ela.2020.5551.
Texto completoShi, Chengfei, Zhengdong Huang, Li Wan y Tifan Xiong. "Low-Rank Tensor Completion Based on Log-Det Rank Approximation and Matrix Factorization". Journal of Scientific Computing 80, n.º 3 (15 de julio de 2019): 1888–912. http://dx.doi.org/10.1007/s10915-019-01009-x.
Texto completoLebedeva, O. S., A. I. Osinsky y S. V. Petrov. "Low-Rank Approximation Algorithms for Matrix Completion with Random Sampling". Computational Mathematics and Mathematical Physics 61, n.º 5 (mayo de 2021): 799–815. http://dx.doi.org/10.1134/s0965542521050122.
Texto completoHuang, Zhi-Long y Hsu-Feng Hsiao. "Inter-frame Prediction with Fast Weighted Low-rank Matrix Approximation". International Journal of Electronics and Telecommunications 59, n.º 1 (1 de marzo de 2013): 9–16. http://dx.doi.org/10.2478/eletel-2013-0001.
Texto completoKirsteins, I. P. y D. W. Tufts. "Adaptive detection using low rank approximation to a data matrix". IEEE Transactions on Aerospace and Electronic Systems 30, n.º 1 (1994): 55–67. http://dx.doi.org/10.1109/7.250406.
Texto completoXu, Fei, Jingqi Han, Yongli Wang, Ming Chen, Yongyong Chen, Guoping He y Yunhong Hu. "Dynamic Magnetic Resonance Imaging via Nonconvex Low-Rank Matrix Approximation". IEEE Access 5 (2017): 1958–66. http://dx.doi.org/10.1109/access.2017.2657645.
Texto completoZhou, Guoxu, Andrzej Cichocki y Shengli Xie. "Fast Nonnegative Matrix/Tensor Factorization Based on Low-Rank Approximation". IEEE Transactions on Signal Processing 60, n.º 6 (junio de 2012): 2928–40. http://dx.doi.org/10.1109/tsp.2012.2190410.
Texto completoNechepurenko, Yuri M. y Miloud Sadkane. "A Low-Rank Approximation for Computing the Matrix Exponential Norm". SIAM Journal on Matrix Analysis and Applications 32, n.º 2 (abril de 2011): 349–63. http://dx.doi.org/10.1137/100789774.
Texto completoShen, Haipeng y Jianhua Z. Huang. "Sparse principal component analysis via regularized low rank matrix approximation". Journal of Multivariate Analysis 99, n.º 6 (julio de 2008): 1015–34. http://dx.doi.org/10.1016/j.jmva.2007.06.007.
Texto completoFeng, Xingdong y Xuming He. "Statistical inference based on robust low-rank data matrix approximation". Annals of Statistics 42, n.º 1 (febrero de 2014): 190–210. http://dx.doi.org/10.1214/13-aos1186.
Texto completoGillard, J. W. y A. A. Zhigljavsky. "Stochastic algorithms for solving structured low-rank matrix approximation problems". Communications in Nonlinear Science and Numerical Simulation 21, n.º 1-3 (abril de 2015): 70–88. http://dx.doi.org/10.1016/j.cnsns.2014.08.023.
Texto completoChang, Haixia. "Constrained Low Rank Approximation of the Hermitian Nonnegative-Definite Matrix". Advances in Linear Algebra & Matrix Theory 10, n.º 02 (2020): 22–33. http://dx.doi.org/10.4236/alamt.2020.102003.
Texto completoChen, Yongyong, Yanwen Guo, Yongli Wang, Dong Wang, Chong Peng y Guoping He. "Denoising of Hyperspectral Images Using Nonconvex Low Rank Matrix Approximation". IEEE Transactions on Geoscience and Remote Sensing 55, n.º 9 (septiembre de 2017): 5366–80. http://dx.doi.org/10.1109/tgrs.2017.2706326.
Texto completoInoue, Kohei y Kiichi Urahama. "Dimensionality reduction by simultaneous low-rank approximation of matrix data". Electronics and Communications in Japan (Part II: Electronics) 90, n.º 9 (2007): 42–49. http://dx.doi.org/10.1002/ecjb.20379.
Texto completoHutchings, Matthew y Bertrand Gauthier. "Energy-Based Sequential Sampling for Low-Rank PSD-Matrix Approximation". SIAM Journal on Mathematics of Data Science 6, n.º 4 (28 de octubre de 2024): 1055–77. http://dx.doi.org/10.1137/23m162449x.
Texto completoBrick, Yaniv y Ali E. Yilmaz. "Rapid Rank Estimation and Low-Rank Approximation of Impedance Matrix Blocks Using Proxy Grids". IEEE Transactions on Antennas and Propagation 66, n.º 10 (octubre de 2018): 5359–69. http://dx.doi.org/10.1109/tap.2018.2854361.
Texto completo