Literatura académica sobre el tema "Low frequency electromagnetic waves"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Low frequency electromagnetic waves".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Low frequency electromagnetic waves"
Guenneau, S., C. Geuzaine, A. Nicolet, A. B. Movchan y F. Zolla. "Low frequency electromagnetic waves in periodic structures". International Journal of Applied Electromagnetics and Mechanics 19, n.º 1-4 (24 de abril de 2004): 479–83. http://dx.doi.org/10.3233/jae-2004-612.
Texto completoTarkhanyan, Roland H. y Dimitris G. Niarchos. "Negative refraction of low-frequency electromagnetic waves". physica status solidi (RRL) - Rapid Research Letters 2, n.º 5 (octubre de 2008): 239–41. http://dx.doi.org/10.1002/pssr.200802143.
Texto completoMorales, J., M. Garcia, C. Perez, J. V. Valverde, C. Lopez-Sanchez, V. Garcia-Martinez y J. L. Quesada. "Low frequency electromagnetic radiation and hearing". Journal of Laryngology & Otology 123, n.º 11 (2 de julio de 2009): 1204–11. http://dx.doi.org/10.1017/s0022215109005684.
Texto completoLiang, Bowen, Yong Cui, Xiao Song, Liangya Li y Chen Wang. "Multi-block electret-based mechanical antenna model for low frequency communication". International Journal of Modeling, Simulation, and Scientific Computing 10, n.º 05 (octubre de 2019): 1950036. http://dx.doi.org/10.1142/s1793962319500363.
Texto completoRizzato, F. B. y A. C. L. Chian. "Nonlinear generation of the fundamental radiation in plasmas: the influence of induced ion-acoustic and Langmuir waves". Journal of Plasma Physics 48, n.º 1 (agosto de 1992): 71–84. http://dx.doi.org/10.1017/s0022377800016378.
Texto completoYao, S. T., Q. Q. Shi, Q. G. Zong, A. W. Degeling, R. L. Guo, L. Li, J. X. Li et al. "Low-frequency Whistler Waves Modulate Electrons and Generate Higher-frequency Whistler Waves in the Solar Wind". Astrophysical Journal 923, n.º 2 (1 de diciembre de 2021): 216. http://dx.doi.org/10.3847/1538-4357/ac2e97.
Texto completoFriar, J. L. y H. R. Reiss. "Modification of nuclearβdecay by intense low-frequency electromagnetic waves". Physical Review C 36, n.º 1 (1 de julio de 1987): 283–97. http://dx.doi.org/10.1103/physrevc.36.283.
Texto completoLakhina, G. S. y N. L. Tsintsadze. "Large-amplitude low-frequency electromagnetic waves in pulsar magnetospheres". Astrophysics and Space Science 174, n.º 1 (1990): 143–50. http://dx.doi.org/10.1007/bf00645660.
Texto completoChaston, C. C., J. W. Bonnell, C. A. Kletzing, G. B. Hospodarsky, J. R. Wygant y C. W. Smith. "Broadband low-frequency electromagnetic waves in the inner magnetosphere". Journal of Geophysical Research: Space Physics 120, n.º 10 (octubre de 2015): 8603–15. http://dx.doi.org/10.1002/2015ja021690.
Texto completoShukla, P. K. y H. U. Rahman. "Low-frequency electromagnetic waves in nonuniform gravitating dusty magnetoplasmas". Planetary and Space Science 44, n.º 5 (mayo de 1996): 469–72. http://dx.doi.org/10.1016/0032-0633(95)00132-8.
Texto completoTesis sobre el tema "Low frequency electromagnetic waves"
Liu, Zhongjian. "Investigation of low frequency electromagnetic waves for long-range lightning location". Thesis, University of Bath, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.760951.
Texto completoSeguin, Sarah Ann. "Detection of low cost radio frequency receivers based on their unintended electromagnetic emissions and an active stimulation". Diss., Rolla, Mo. : Missouri University of Science and Technology, 2009. http://scholarsmine.mst.edu/thesis/pdf/Seguin_09007dcc80708216.pdf.
Texto completoVita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed November 23, 2009) Includes bibliographical references.
Umeda, Takayuki. "Generation of low-frequency electrostatic and electromagnetic waves as nonlinear consequences of beam–plasma interactions". American Institite of Physics, 2008. http://hdl.handle.net/2237/12028.
Texto completoChen, Chi-Chih. "Design and applications of two low frequency guided wave electromagnetic measurement structures". The Ohio State University, 1993. http://rave.ohiolink.edu/etdc/view?acc_num=osu1406708013.
Texto completoPokkuluri, Kiran S. "Effect of Admixtures, Chlorides, and Moisture on Dielectric Properties of Portland Cement Concrete in the Low Microwave Frequency Range". Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/37039.
Texto completoMaster of Science
Bittle, James R. "2017 Full Solar Eclipse| Observations and LWPC Modeling of Very Low Frequency Electromagnetic Wave Propagation". Thesis, University of Colorado at Denver, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10843376.
Texto completoOn August 21, 2017 a total solar eclipse occurred over the United States commencing on the west coast moving across to the east coast providing an opportunity to observe how the rapid day-night-day transition changed the ionosphere’s D-region electron density and how very low frequency (VLF) electromagnetic wave propagation was affected. To observe the solar obscurity effects, VLF receivers were deployed in two locations: one in the path of totality in Lakeside, Nebraska and another south of the totality path in Hugo, Colorado. The locations were chosen to achieve an orthogonal geometry between the eclipse path and propagation path of U. S. Navy VLF transmitter in North Dakota, which operates at 25.2 kHz and has call sign NML. VLF amplitude and phase changes were observed in both Lakeside and Hugo during the eclipse. A negative phase change was observed at both receivers as solar obscuration progressively increased. The observed phase changes became positive as solar obscuration reduced. The opposite trend was observed for the amplitude of the transmitted signal: growth as max totality approached and decay during the shadow’s recession. The Long Wave Propagation Capability (LWPC) code developed by the US Navy was used to model the observations. LWPC is a modal solution finder for Earth-ionosphere waveguide propagation that takes into account the D-region density profile. In contrast to past efforts where a single ionosphere profile was assumed over the entire propagation path, a degree of spatial resolution along the path was sought here by solving for multiple segments of length 100-200 km along the path. LWPC modeling suggests that the effective reflection height changed from 71 km in the absence of the eclipse, to 78 km at the center of the path of totality during the total solar eclipse and is on agreement with past work.
MAROUAN, YOUSSEF. "Etat de polarisation et caracteristiques de propagation moyennes d'emissions em naturelles dans un magnetoplasma froid : application aux donnees ebf du satellite aureol-3". Orléans, 1988. http://www.theses.fr/1988ORLE2040.
Texto completoSuedan, Gibreel A. "High frequency beam diffraction by apertures and reflectors". Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/27545.
Texto completoApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Kipp, Robert. "Mixed potential integral equation solutions for layered media structures : high frequency interconnects and frequency selective surfaces /". Thesis, Connect to this title online; UW restricted, 1993. http://hdl.handle.net/1773/5974.
Texto completoLachin, Anoosh. "Low frequency waves in the solar system". Thesis, Imperial College London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.267713.
Texto completoLibros sobre el tema "Low frequency electromagnetic waves"
Hitchcock, R. Timothy. Extremely low frequency (ELF) electric and magnetic fields \. Fairfax, Va: AIHA, 1995.
Buscar texto completoC, Ferguson Dale y United States. National Aeronautics and Space Administration., eds. Low frequency waves in the plasma environment around the shuttle. [Washington, DC: National Aeronautics and Space Administration, 1996.
Buscar texto completoLow frequency electromagnetic design. New York: M. Dekker, 1985.
Buscar texto completoHealth and low-frequency electromagnetic fields. New Haven, CT: Yale University Press, 1994.
Buscar texto completoIvo, Doležel y Karban Pavel 1979-, eds. Integral methods in low-frequency electromagnetics. Hoboken, N.J: Wiley, 2009.
Buscar texto completoKeiling, Andreas, Dong-Hun Lee y Valery Nakariakov, eds. Low-Frequency Waves in Space Plasmas. Hoboken, NJ: John Wiley & Sons, Inc, 2016. http://dx.doi.org/10.1002/9781119055006.
Texto completo1943-, Varadan V. K. y Varadan V. V. 1948-, eds. Low and high frequency asymptotics. Amsterdam: North-Holland, 1986.
Buscar texto completoSurkov, Vadim y Masashi Hayakawa. Ultra and Extremely Low Frequency Electromagnetic Fields. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54367-1.
Texto completoW, Hafemeister David, ed. Biological effects of low-frequency electromagnetic fields. College Park, MD: American Association of Physics Teachers, 1998.
Buscar texto completoauthor, Hayakawa Masashi, ed. Ultra and extremely low frequency electromagnetic fields. Tokyo: Springer, 2014.
Buscar texto completoCapítulos de libros sobre el tema "Low frequency electromagnetic waves"
Chew, Weng Cho, Mei Song Tong y Bin Hu. "Low-Frequency Problems in Integral Equations". En Integral Equation Methods for Electromagnetic and Elastic Waves, 107–34. Cham: Springer International Publishing, 2009. http://dx.doi.org/10.1007/978-3-031-01707-0_5.
Texto completoYakubov, Vladimir y Dmitry Sukhanov. "Applications of Low‑Frequency Magnetic Tomography". En Electromagnetic and Acoustic Wave Tomography, 313–22. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.”: CRC Press, 2018. http://dx.doi.org/10.1201/9780429488276-13.
Texto completoYakubov, Vladimir, Sergey Shipilov, Dmitry Sukhanov y Andrey Klokov. "Low-Frequency Magnetic and Electrostatic Tomography". En Electromagnetic and Acoustic Wave Tomography, 79–87. Boca Raton, FL : CRC Press/Taylor & Francis Group, 2018. | “A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.”: CRC Press, 2018. http://dx.doi.org/10.1201/9780429488276-4.
Texto completoSarkar, Tapan K., Jinhwan Koh y Magdalena Salazar Palma. "Generation of Wideband Electromagnetic Responses Using Early-Time and Low-Frequency Data". En Novel Technologies for Microwave and Millimeter — Wave Applications, 411–24. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-1-4757-4156-8_19.
Texto completoSimões, Fernando, Robert Pfaff, Jean-Jacques Berthelier y Jeffrey Klenzing. "A Review of Low Frequency Electromagnetic Wave Phenomena Related to Tropospheric-Ionospheric Coupling Mechanisms". En Dynamic Coupling Between Earth’s Atmospheric and Plasma Environments, 551–93. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-5677-3_20.
Texto completoChaudhuri, S. K. "Electromagnetic Low Frequency Imaging". En Inverse Methods in Electromagnetic Imaging, 997–1007. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5271-3_17.
Texto completoChaudhuri, S. K. "Electromagnetic Low Frequency Imaging". En Inverse Methods in Electromagnetic Imaging, 997–1007. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-010-9444-3_56.
Texto completoCui, Jianzhong, Haitao Zhang, Lei Li, Yubo Zuo y Hiromi Nagaumi. "Electromagnetic Stirring and Low-Frequency Electromagnetic Vibration". En Solidification Processing of Metallic Alloys Under External Fields, 119–51. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94842-3_4.
Texto completoTodorov, Nencho G. "Magnetotherapy with Low-Frequency Electromagnetic Field". En Electromagnetic Fields and Biomembranes, 129–33. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9507-6_14.
Texto completoFaessler, A., R. Nojarov y Z. Bochnacki. "Low-Frequency Neutron-Proton Vibrations". En Weak and Electromagnetic Interactions in Nuclei, 339–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-71689-8_71.
Texto completoActas de conferencias sobre el tema "Low frequency electromagnetic waves"
Zakharchenko, Vladimir D. "Modelling of Low-altitude Altimeters Using Additional Frequency Modulation". En 2021 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2021. http://dx.doi.org/10.1109/rsemw52378.2021.9494124.
Texto completoElizarov, Sergey V. y Andrey P. Smirnov. "Methods for Reflectivity Measurements of Objects and Materials on the Low Frequency". En 2021 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2021. http://dx.doi.org/10.1109/rsemw52378.2021.9494114.
Texto completoSkrylev, A. V., A. E. Panich y G. S. Radchenko. "Quazistatic piezoelectric-magnet-metal symmetric device for effective measurement of low-frequency magnetic field". En 2017 Radiation and Scattering of Electromagnetic Waves (RSEMW). IEEE, 2017. http://dx.doi.org/10.1109/rsemw.2017.8103682.
Texto completoLin, B. y A. B. Cerato. "Study of Expansive Soil Behavior Using Low to Medium Frequency Electromagnetic Waves". En GeoFlorida 2010. Reston, VA: American Society of Civil Engineers, 2010. http://dx.doi.org/10.1061/41095(365)69.
Texto completoEklund, Gunnar, Tobias Bergsten, Valter Tarasso y Karl-Erik Rydler. "Determination of transition error corrections for low frequency stepwise-approximated Josephson sine waves". En 2010 Conference on Precision Electromagnetic Measurements (CPEM 2010). IEEE, 2010. http://dx.doi.org/10.1109/cpem.2010.5545119.
Texto completoYang, Min, Guancong Ma, Songwen Xiao, Zhiyu Yang y Ping Sheng. "Hybrid resonance and the total absorption of low frequency acoustic waves". En 2015 9th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2015. http://dx.doi.org/10.1109/metamaterials.2015.7342498.
Texto completoKorshunova, E. N., A. N. Sivov y A. D. Shatrov. "Low-frequency resonator antenna converting linear polarized waves into circular". En Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory. Proceedings of 4th International Seminar/Workshop. DIPED - 99. IEEE, 1999. http://dx.doi.org/10.1109/diped.1999.822153.
Texto completoJames, H. G. y A. W. Yau. "Observations of Electromagnetic Waves at Very Low Frequency in the Near Topside Ionosphere". En 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA). IEEE, 2019. http://dx.doi.org/10.1109/iceaa.2019.8879120.
Texto completoWang, Jinhong, Lei Sang y Bin Li. "The Detection of Buried Objects in Shallow Sea with Low Frequency Electromagnetic Waves". En 2018 OCEANS - MTS/IEEE Kobe Techno-Ocean (OTO). IEEE, 2018. http://dx.doi.org/10.1109/oceanskobe.2018.8559390.
Texto completoShukla, Padma Kant. "New generalized dispersion relation for low-frequency electromagnetic waves in Hall-magnetohydrodynamic dusty plasmas". En NEW VISTAS IN DUSTY PLASMAS: Fourth International Conference on the Physics of Dusty Plasmas. AIP, 2005. http://dx.doi.org/10.1063/1.2134627.
Texto completoInformes sobre el tema "Low frequency electromagnetic waves"
Sweeney, J. Low Frequency Electromagnetic Pulse and Explosions. Office of Scientific and Technical Information (OSTI), febrero de 2011. http://dx.doi.org/10.2172/1030215.
Texto completoCasey, K. y H. Pao. Low-Frequency Electromagnetic Backscatter from Buried Tunnels. Office of Scientific and Technical Information (OSTI), junio de 2006. http://dx.doi.org/10.2172/891712.
Texto completoAldrich, T. (Low frequency electromagnetic fields and public health). Office of Scientific and Technical Information (OSTI), mayo de 1988. http://dx.doi.org/10.2172/6866726.
Texto completoUnknown, Author. L51630 In-Line Detection and Sizing of Stress Corrosion Cracks Using EMAT Ultrasonics. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), abril de 1990. http://dx.doi.org/10.55274/r0010616.
Texto completoFord, S. y J. Sweeney. Low-frequency Electromagnetic Detection Limits of Underground Nuclear Explosions. Office of Scientific and Technical Information (OSTI), septiembre de 2020. http://dx.doi.org/10.2172/1670539.
Texto completoShubitidze, Fridon. A Low Frequency Electromagnetic Sensor for Underwater Geo-Location. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2011. http://dx.doi.org/10.21236/ada548971.
Texto completoMayhall, D. A Preliminary Low-Frequency Electromagnetic Analysis of a Flux Concentrator. Office of Scientific and Technical Information (OSTI), junio de 2006. http://dx.doi.org/10.2172/900087.
Texto completoGalperin, Yu M., D. A. Parshin y V. N. Solovyev. Nonlinear Low-Temperature Absorption of Ultrasound and Electromagnetic Waves in Glasses. [б. в.], agosto de 1989. http://dx.doi.org/10.31812/0564/1243.
Texto completoSharma, Mukul, Javid Shiriyev, Peng Zhang, Yaniv Brick, Dave Glowka, Jeff Gabelmann y Robert Houston. Fracture Diagnostics Using Low Frequency Electromagnetic Induction and Electrically Conductive Proppants. Office of Scientific and Technical Information (OSTI), diciembre de 2018. http://dx.doi.org/10.2172/1489696.
Texto completoHewett, D. W., D. Bateson, M. Gibbons, M. Lambert, L. Tung y G. Rodrique. Coupled models in low-frequency electromagnetic simulation LDRD Final Report 94-ERI-004. Office of Scientific and Technical Information (OSTI), febrero de 1997. http://dx.doi.org/10.2172/328157.
Texto completo