Artículos de revistas sobre el tema "Low energy electron diffraction"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Low energy electron diffraction.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Low energy electron diffraction".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Silin, A. P. "Low-energy electron diffraction". Soviet Physics Uspekhi 31, n.º 4 (30 de abril de 1988): 381. http://dx.doi.org/10.1070/pu1988v031n04abeh005759.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Rous, P. J. "Tensor low-energy electron diffraction". Journal of Physics: Condensed Matter 6, n.º 40 (3 de octubre de 1994): 8103–32. http://dx.doi.org/10.1088/0953-8984/6/40/004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Heinz, K., A. Seubert y D. K. Saldin. "Holographic low-energy electron diffraction". Journal of Physics: Condensed Matter 13, n.º 47 (12 de noviembre de 2001): 10647–63. http://dx.doi.org/10.1088/0953-8984/13/47/308.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Starke, U., J. B. Pendry y K. Heinz. "Diffuse low-energy electron diffraction". Progress in Surface Science 52, n.º 2 (junio de 1996): 53–124. http://dx.doi.org/10.1016/0079-6816(96)00007-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ichinokawa, T., Y. Ishikawa, M. Kemmochi, N. Ikeda, Y. Hosokawa y J. Kirchner. "Low energy scanning electron microscopy combined with low energy electron diffraction". Surface Science Letters 176, n.º 1-2 (octubre de 1986): A556. http://dx.doi.org/10.1016/0167-2584(86)91061-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ichinokawa, T., Y. Ishikawa, M. Kemmochi, N. Ikeda, Y. Hosokawa y J. Kirschner. "Low energy scanning electron microscopy combined with low energy electron diffraction". Surface Science 176, n.º 1-2 (octubre de 1986): 397–414. http://dx.doi.org/10.1016/0039-6028(86)90184-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lynch, D. F. y A. E. Smith. "Electron diffraction phenomena for very low energy electrons". Acta Crystallographica Section A Foundations of Crystallography 43, a1 (12 de agosto de 1987): C246. http://dx.doi.org/10.1107/s0108767387078887.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Claus, H., A. Büssenschütt y M. Henzler. "Low‐energy electron diffraction with energy resolution". Review of Scientific Instruments 63, n.º 4 (abril de 1992): 2195–99. http://dx.doi.org/10.1063/1.1143138.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Qian, W. y J. C. H. Spence. "Theory of transmission low-energy electron diffraction". Proceedings, annual meeting, Electron Microscopy Society of America 51 (1 de agosto de 1993): 696–97. http://dx.doi.org/10.1017/s0424820100149313.

Texto completo
Resumen
Interpretation of the images from a point source electron microscope requires a detailed analysis of transmission low energy electron diffraction. Here we present a general approach for solutions to the mixed Bragg-Laue case in transmission LEED (100-1000eV), based on the dynamical diffraction theory of Bethe. However, the validity of the dynamical diffraction theory to low energy electrons can be justified by its connection to the band theory for low energy crystal electrons.Assume that the incident beam forms a plane wave and the crystal is a thin slab. According to Bethe, the total electron wavefield within crystal can be written as a linear combination of Bloch waves (equation 1). The Bloch wave excitation coefficients b(j) can be determined by matching the boundary conditions, the wave amplitudes Cg(j) and the wave vectors k(j) for each Bloch wave can be obtained by solving the time independent Schrodinger equations (equation 2).
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Nibbering, E. T. J. "Low-energy electron diffraction at ultrafast speeds". Science 345, n.º 6193 (10 de julio de 2014): 137–38. http://dx.doi.org/10.1126/science.1256199.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Stachulec, K. "Spin polarized low energy electron diffraction (SPLEED)". Physica B+C 142, n.º 3 (diciembre de 1986): 332–47. http://dx.doi.org/10.1016/0378-4363(86)90028-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Diehl, R. D., J. Ledieu, N. Ferralis, A. W. Szmodis y R. McGrath. "Low-energy electron diffraction from quasicrystal surfaces". Journal of Physics: Condensed Matter 15, n.º 3 (13 de enero de 2003): R63—R81. http://dx.doi.org/10.1088/0953-8984/15/3/201.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Over, H., M. Gierer, H. Bludau, G. Ertl y S. Y. Tong. "Fingerprinting technique in low-energy electron diffraction". Surface Science 314, n.º 2 (julio de 1994): 243–68. http://dx.doi.org/10.1016/0039-6028(94)90010-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Jia, J. F., R. G. Zhao y W. S. Yang. "Quasikinematic low-energy electron-diffraction surface crystallography". Physical Review B 48, n.º 24 (15 de diciembre de 1993): 18101–8. http://dx.doi.org/10.1103/physrevb.48.18101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Stachulec, K. y A. Stachulec. "Temperature Dependence of Low Energy Electron Diffraction". physica status solidi (b) 141, n.º 2 (1 de junio de 1987): K89—K92. http://dx.doi.org/10.1002/pssb.2221410228.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Müller, Bert y Martin Henzler. "Comparison of reflection high-energy electron diffraction and low-energy electron diffraction using high-resolution instrumentation". Surface Science 389, n.º 1-3 (noviembre de 1997): 338–48. http://dx.doi.org/10.1016/s0039-6028(97)00447-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Tromp, Ruud M. "Low-Energy Electron Microscopy". MRS Bulletin 19, n.º 6 (junio de 1994): 44–46. http://dx.doi.org/10.1557/s0883769400036757.

Texto completo
Resumen
For surface science, the 1980s were the decade in which the microscopes arrived. The scanning tunneling microscope (STM) was invented in 1982. Ultrahigh vacuum transmission electron microscopy (UHVTEM) played a key role in resolving the structure of the elusive Si(111)-7 × 7 surface. Scanning electron microscopy (SEM) as well as reflection electron microscopy (REM) were applied to the study of growth and islanding. And low-energy electron microscopy (LEEM), invented some 20 years earlier, made its appearance with the work of Telieps and Bauer.LEEM and TEM have many things in common. Unlike STM and SEM, they are direct imaging techniques, using magnifying lenses. Both use an aperture to select a particular diffracted beam, which determines the nature of the contrast. If the direct beam is selected (no parallel momentum transfer), a bright field image is formed, and contrast arises primarily from differences in the scattering factor. A dark field image is formed with any other beam in the diffraction pattern, allowing contrast due to differences in symmetry. In LEEM, phase contrast is the third important mechanism by which surface and interface features such as atomic steps and dislocations may be imaged. One major difference between TEM and LEEM is the electron energy: 100 keV and above in TEM, 100 eV and below in LEEM. In LEEM, the imaging electrons are reflected from the sample surface, unlike TEM where the electrons zip right through the sample, encountering top surface, bulk, and bottom surface. STM and TEM are capable of ~2 Å resolution, while LEEM and SEM can observe surface features (including atomic steps) with -100 Å resolution.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Cao, Yijian y Edward H. Conrad. "High q‐resolution electron gun for low energy electron diffraction". Review of Scientific Instruments 60, n.º 8 (agosto de 1989): 2642–45. http://dx.doi.org/10.1063/1.1140686.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Sawler, J. y D. Venus. "Electron polarimeter based on spin‐polarized low‐energy electron diffraction". Review of Scientific Instruments 62, n.º 10 (octubre de 1991): 2409–18. http://dx.doi.org/10.1063/1.1142256.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Burch, Kathryn D., J. L. Huang y Robert G. Greenler. "Optical simulation of low‐energy electron diffraction patterns". American Journal of Physics 53, n.º 3 (marzo de 1985): 237–42. http://dx.doi.org/10.1119/1.14130.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Wander, A., J. B. Pendry y M. A. Van Hove. "Linear approximation to dynamical low-energy electron diffraction". Physical Review B 46, n.º 15 (15 de octubre de 1992): 9897–99. http://dx.doi.org/10.1103/physrevb.46.9897.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Saldin, D. K., J. B. Pendry, M. A. Van Hove y G. A. Somorjai. "Interpretation of diffuse low-energy electron diffraction intensities". Physical Review B 31, n.º 2 (15 de enero de 1985): 1216–18. http://dx.doi.org/10.1103/physrevb.31.1216.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Namba, Yoshikatsu y Toshio Mōri. "Two‐grid Auger–low energy electron diffraction system". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 4, n.º 4 (julio de 1986): 1884–87. http://dx.doi.org/10.1116/1.573740.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Hwang, Robert Q., Ellen D. Williams y Robert L. Park. "A high‐resolution low‐energy electron diffraction instrument". Review of Scientific Instruments 60, n.º 9 (septiembre de 1989): 2945–48. http://dx.doi.org/10.1063/1.1140632.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Kim, S. K., F. Jona y J. A. Strozier. "Correction of experimental low-energy electron-diffraction intensities". Physical Review B 51, n.º 19 (15 de mayo de 1995): 13837–40. http://dx.doi.org/10.1103/physrevb.51.13837.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Nazarov, V. U. y S. Nishigaki. "Inelastic low energy electron diffraction at metal surfaces". Surface Science 482-485 (junio de 2001): 640–47. http://dx.doi.org/10.1016/s0039-6028(01)00784-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Delong, A. y V. Kolařík. "Selected area low energy electron diffraction and microscopy". Ultramicroscopy 17, n.º 1 (1985): 67–72. http://dx.doi.org/10.1016/0304-3991(85)90178-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Galiy, P., T. Nenchuk, A. Ciszewski, P. Mazur, S. Zuber y I. Yarovets’. "Scanning Tunneling Microscopy/Spectroscopy and Low-Energy Electron Diffraction Investigations of GaTe Layered Crystal Cleavage Surface". METALLOFIZIKA I NOVEISHIE TEKHNOLOGII 37, n.º 6 (17 de agosto de 2016): 789–801. http://dx.doi.org/10.15407/mfint.37.06.0789.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Tromp, R. M., M. Mankos, M. C. Reuter, A. W. Ellis y M. Copel. "A New Low Energy Electron Microscope". Surface Review and Letters 05, n.º 06 (diciembre de 1998): 1189–97. http://dx.doi.org/10.1142/s0218625x98001523.

Texto completo
Resumen
Low energy electron microscopy (LEEM) has developed into one of the premier techniques for in situ studies of surface dynamical processes, such as epitaxial growth, phase transitions, chemisorption and strain relaxation phenomena. Over the last three years we have designed and constructed a new LEEM instrument, aimed at improved resolution, improved diffraction capabilities and greater ease of operation compared to present instruments.
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Vuorinen, J., K. Pussi, R. D. Diehl y M. Lindroos. "Correlation of electron self-energy with geometric structure in low-energy electron diffraction". Journal of Physics: Condensed Matter 24, n.º 1 (29 de noviembre de 2011): 015003. http://dx.doi.org/10.1088/0953-8984/24/1/015003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Omori, Shinji y Yoshimasa Nihei. "Photoelectron diffraction intensity calculation by using tensor low-energy electron diffraction theory". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17, n.º 4 (julio de 1999): 1621–25. http://dx.doi.org/10.1116/1.581861.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

TONG, S. Y., T. P. CHU, HUASHENG WU y H. HUANG. "LOW-ENERGY ELECTRON HOLOGRAMS: PROPERTIES AND METHOD OF INVERSION". Surface Review and Letters 04, n.º 03 (junio de 1997): 459–67. http://dx.doi.org/10.1142/s0218625x97000444.

Texto completo
Resumen
We examine the differences between low-energy electron-diffraction patterns (holograms) and optical holograms. We show that electron-diffraction patterns in solids are not analogous to optical holograms because of strong dynamical factors. We also show that low-energy electron holograms can be inverted by a large-wave-number small-angle integral transformation. The grid sizes in wave number and angular spaces used in the transformation are derived.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Tear, S. P. "Surface Crystallography: An Introduction to Low Energy Electron Diffraction". Physics Bulletin 36, n.º 12 (diciembre de 1985): 506. http://dx.doi.org/10.1088/0031-9112/36/12/026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Clarke, L. J. y Paul M. Marcus. "Surface Crystallography: An Introduction to Low Energy Electron Diffraction". Physics Today 40, n.º 4 (abril de 1987): 83–84. http://dx.doi.org/10.1063/1.2819989.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Lee, Suk Kyoung, Yun Fei Lin, Lu Yan y Wen Li. "Laser-Induced Low Energy Electron Diffraction in Aligned Molecules". Journal of Physical Chemistry A 116, n.º 8 (15 de febrero de 2012): 1950–55. http://dx.doi.org/10.1021/jp210798c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Eden, V. L. y S. C. Fain. "Ethylene on graphite: A low-energy electron-diffraction study". Physical Review B 43, n.º 13 (1 de mayo de 1991): 10697–705. http://dx.doi.org/10.1103/physrevb.43.10697.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Lander, J. J. y J. Morrison. "LOW ENERGY ELECTRON DIFFRACTION STUDY OF SILICON SURFACE STRUCTURES". Annals of the New York Academy of Sciences 101, n.º 3 (22 de diciembre de 2006): 605–26. http://dx.doi.org/10.1111/j.1749-6632.1963.tb54918.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Farnsworth, H. E. "LOW ENERGY ELECTRON DIFFRACTION FROM A CLEAVED GERMANIUM SURFACE*". Annals of the New York Academy of Sciences 101, n.º 3 (22 de diciembre de 2006): 658–66. http://dx.doi.org/10.1111/j.1749-6632.1963.tb54922.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Wander, A. "A new modular low energy electron diffraction package — DL_LEED". Computer Physics Communications 137, n.º 1 (junio de 2001): 4–11. http://dx.doi.org/10.1016/s0010-4655(01)00168-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Dorel, S., F. Pesty y P. Garoche. "Oscillating low-energy electron diffraction for studying nanostructured surfaces". Surface Science 446, n.º 3 (febrero de 2000): 294–300. http://dx.doi.org/10.1016/s0039-6028(99)01158-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Li, Wei, Dong Zhao y D. Haneman. "Low-energy electron diffraction from heated porous silicon surfaces". Surface Science 448, n.º 1 (marzo de 2000): 40–48. http://dx.doi.org/10.1016/s0039-6028(99)01190-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Ford, Wayne K. "Low-energy electron diffraction calculations using a parallel supercomputer". Surface Science Letters 292, n.º 3 (agosto de 1993): A614. http://dx.doi.org/10.1016/0167-2584(93)90892-m.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Ford, Wayne K. "Low-energy electron diffraction calculations using a parallel supercomputer". Surface Science 292, n.º 3 (agosto de 1993): 342–48. http://dx.doi.org/10.1016/0039-6028(93)90339-l.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Materer, Nicholas F. "Layer stacking implementation of tensor low energy electron diffraction". Surface Science 491, n.º 1-2 (septiembre de 2001): 131–39. http://dx.doi.org/10.1016/s0039-6028(01)01383-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Wedler, Harald y Klaus Heinz. "Information on Surface Structure by Low Energy Electron Diffraction". Vakuum in Forschung und Praxis 7, n.º 2 (1995): 107–14. http://dx.doi.org/10.1002/vipr.19950070205.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Mizuno, Seigi, F. Rahman y Masayuki Iwanaga. "Low-Energy Electron Diffraction Patterns Using Field-Emitted Electrons from Tungsten Tips". Japanese Journal of Applied Physics 45, No. 6 (3 de febrero de 2006): L178—L179. http://dx.doi.org/10.1143/jjap.45.l178.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Bauer, E., A. Pavlovska y I. S. T. Tsong. "In Situ Nitride Growth Studies by Low Energy Electron Microscopy (LEEM) and Low Energy Electron Diffraction (LEED)". Microscopy and Microanalysis 3, S2 (agosto de 1997): 611–12. http://dx.doi.org/10.1017/s1431927600009946.

Texto completo
Resumen
Nitride films play an increasing role in modern electronics, for example silicon nitride as insulating layer in Si-based devices or GaN in blue light emitting diodes and lasers. For this reason they have been the subject of many ex situ electron microscopic studies. A much deeper understanding of the growth of these important materials can be obtained by in situ studies. Although these could be done by SEM, LEEM combined with LEED is much better suited because of its excellent surface sensitivity and diffraction contrast. We have in the past studied the high temperture nitridation of Si(l11) by ammonia (NH3)and the growth of GaN and A1N films on Si(l11) and 6H-SiC(0001) by depositing Ga and Al in the presence of NH3 and will report some of the results of this work for comparison with more recent work using atomic nitrogen instead of NH3.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Wu, Jinsong y John C. H. Spence. "Low-Dose, Low-Temperature Convergent-Beam Electron Diffraction and Multiwavelength Analysis of Hydrocarbon Films by Electron Diffraction". Microscopy and Microanalysis 9, n.º 5 (16 de septiembre de 2003): 428–41. http://dx.doi.org/10.1017/s1431927603030368.

Texto completo
Resumen
Aromatic hydrocarbon (perylene, coronene) and tetracontane films are shown to produce useful convergent-beam electron diffraction (CBED) patterns under low-dose and low-temperature conditions. These were obtained using a Zeiss LEO-921 electron microscope with an omega energy filter at liquid helium and nitrogen temperatures. The usefulness of patterns showing CBED disks of constant intensity (“blank disks,” indicating kinematic scattering) for structure analysis is investigated, with the aim of avoiding film-bending artifacts. Using CBED patterns from thicker areas, sample thickness was experimentally determined using either two-beam or three-beam patterns. Koehler mode illumination (a new form of SAD pattern offering smaller areas) was also used, and the possibility of obtaining structure factor moduli using the kinematic and two-beam approximations was investigated by comparing measured diffraction intensities with experimental ones for these known structures. The commonly used approximation |F| ∼ Ig (intended to account for bending) was found to be a worse approximation than the two-beam approximation with well-defined excitation error for these microdiffraction experiments. A new multiwavelength method of retrieving structure factor moduli and thickness from microdiffraction patterns using two-beam theory is demonstrated for tetracontane.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Rundgren, J. "Electron inelastic mean free path, electron attenuation length, and low-energy electron-diffraction theory". Physical Review B 59, n.º 7 (15 de febrero de 1999): 5106–14. http://dx.doi.org/10.1103/physrevb.59.5106.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Usami, S., H. Nakai, T. Yaguchi, Y. Kumashiro y A. Fujimori. "Auger electron spectroscopy–electron energy‐loss spectroscopy–low‐energy electron diffraction study of a V6C5(100) surface". Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, n.º 4 (julio de 1987): 985–88. http://dx.doi.org/10.1116/1.574307.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía