Literatura académica sobre el tema "Low-Cost silicon"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Low-Cost silicon".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Low-Cost silicon"
Chatzakis, J., S. Hassan, E. Clark y M. Tatarakis. "A 1GHz Low-cost, Ultra Low-noise Preamplifier". WSEAS TRANSACTIONS ON ELECTRONICS 11 (1 de septiembre de 2020): 120–26. http://dx.doi.org/10.37394/232017.2020.11.15.
Texto completoTamboli, Adele C., David C. Bobela, Ana Kanevce, Timothy Remo, Kirstin Alberi y Michael Woodhouse. "Low-Cost CdTe/Silicon Tandem Solar Cells". IEEE Journal of Photovoltaics 7, n.º 6 (noviembre de 2017): 1767–72. http://dx.doi.org/10.1109/jphotov.2017.2737361.
Texto completoKhoury, H. J., C. A. Hazin, A. P. Mascarenhas y E. F. da Silva. "Low Cost Silicon Photodiode for Electron Dosimetry". Radiation Protection Dosimetry 84, n.º 1 (1 de agosto de 1999): 341–43. http://dx.doi.org/10.1093/oxfordjournals.rpd.a032751.
Texto completoKress, A., R. Kuhn, P. Fath, G. P. Willeke y E. Bucher. "Low-cost back contact silicon solar cells". IEEE Transactions on Electron Devices 46, n.º 10 (1999): 2000–2004. http://dx.doi.org/10.1109/16.791988.
Texto completoBurtescu, S., C. Parvulescu, F. Babarada y E. Manea. "The low cost multicrystalline silicon solar cells". Materials Science and Engineering: B 165, n.º 3 (diciembre de 2009): 190–93. http://dx.doi.org/10.1016/j.mseb.2009.08.009.
Texto completoHampel, Jonathan, Philipp Ehrenreich, Norbert Wiehl, Jens Volker Kratz y Stefan Reber. "HCl gas gettering of low-cost silicon". physica status solidi (a) 210, n.º 4 (14 de enero de 2013): 767–70. http://dx.doi.org/10.1002/pssa.201200885.
Texto completoKondo, Naoki, Mikinori Hotta y Tatsuki Ohji. "Low-Cost Silicon Nitride from β-Silicon Nitride Powder and by Low-Temperature Sintering". International Journal of Applied Ceramic Technology 12, n.º 2 (8 de agosto de 2013): 377–82. http://dx.doi.org/10.1111/ijac.12157.
Texto completoMatsuura, Hideharu, Shungo Sakurai, Yuya Oda, Shinya Fukushima, Shohei Ishikawa, Akinobu Takeshita y Atsuki Hidaka. "Gated Silicon Drift Detector Fabricated from a Low-Cost Silicon Wafer". Sensors 15, n.º 5 (22 de mayo de 2015): 12022–33. http://dx.doi.org/10.3390/s150512022.
Texto completoLo Faro, Maria, Antonio Leonardi, Dario Morganti, Barbara Fazio, Ciro Vasi, Paolo Musumeci, Francesco Priolo y Alessia Irrera. "Low Cost Fabrication of Si NWs/CuI Heterostructures". Nanomaterials 8, n.º 8 (25 de julio de 2018): 569. http://dx.doi.org/10.3390/nano8080569.
Texto completoRahali, F., S. Ansermet, J. Ardalan y D. Otter. "Low‐cost Integrated Silicon Sensors for Industrial Applications". Microelectronics International 11, n.º 3 (marzo de 1994): 18–21. http://dx.doi.org/10.1108/eb044540.
Texto completoTesis sobre el tema "Low-Cost silicon"
Duran, Joshua. "Silicon-Based Infrared Photodetectors for Low-Cost Imaging Applications". University of Dayton / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=dayton155653478017603.
Texto completoOrholor, Ayomanor Benedict. "The production of low-cost solar grade silicon from rice husk". Thesis, Sheffield Hallam University, 2017. http://shura.shu.ac.uk/23502/.
Texto completoPrabhakar, Sandesh. "Algorithms and Low Cost Architectures for Trace Buffer-Based Silicon Debug". Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/35931.
Texto completoMaster of Science
Lai, Jiun-Hong. "Development of low-cost high-efficiency commercial-ready advanced silicon solar cells". Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52234.
Texto completoKrygowski, Thomas Wendell. "A novel simultaneous diffusion technology for low-cost, high-efficiency silicon solar cells". Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/22973.
Texto completoChen, Chia-Wei. "Low cost high efficiency screen printed solar cells on Cz and epitaxial silicon". Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54968.
Texto completoRyu, Kyung Sun. "Development of low-cost and high-efficiency commercial size n-type silicon solar cells". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53842.
Texto completoBerrada, Sounni Amine. "Low cost manufacturing of light trapping features on multi-crystalline silicon solar cells : jet etching method and cost analysis". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/61522.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 127-128).
An experimental study was conducted in order to determine low cost methods to improve the light trapping ability of multi-crystalline solar cells. We focused our work on improving current wet etching methods to achieve the desired light trapping features which consists in micro-scale trenches with parabolic cross-sectional profiles with a target aspect ratio of 1.0. The jet etching with a hard mask method, which consists in impinging a liquid mixture of hydrofluoric, nitric and acetic acids through the opening of hard mask, was developed. First, a computational fluid dynamics simulation was conducted to determine the desired jet velocity and angle to be used in our experiments. We find that using a jet velocity of 3 m/s and a jetting angle of 45° yields the necessary flow characteristics for etching high aspect ratio features. Second, we performed experiments to determine the effect of jet etching using a photo-resist mask and thermally grown silicon oxide mask on multiple silicon substrates : <100>, <110>, <111> and multi-crystalline silicon. Compared to a baseline of etching with no jet, we find that the jet etching process can improve the light trapping ability of the baseline features by improving their aspect ratio up to 65.2% and their light trapping ability up to 38.1%. The highest aspect ratio achieved using the jet etching process was 0.62. However, it must be noted that the repeatability of the results was not consistent: significant variations in the results of the same experiment occurred, making the jet etching process promising but difficult to control. Finally, we performed a cost analysis in order to determine the minimum efficiency that a jet etching process would have to achieve to be cost competitive and its corresponding features aspect ratio. We find that a minimum cell efficiency of 16.63% and feature aspect ratios of 0.57 are necessary for cost competitiveness with current solar cell manufacturing technology.
by Amine Berrada Sounni.
S.M.in Technology and Policy
S.M.
Statnikov, Konstantin [Verfasser]. "Towards Multi-Dimensional Terahertz Imaging Systems Based on Low-Cost Silicon Technologies / Konstantin Statnikov". München : Verlag Dr. Hut, 2016. http://d-nb.info/1097818268/34.
Texto completoLopez, Parra Marcelo. "The design, manufacture and testing of a low-cost cleanroom robot for handling silicon wafers". Thesis, Cranfield University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260098.
Texto completoLibros sobre el tema "Low-Cost silicon"
Muller, J. C. Low cost implantation into silicon. Luxembourg: Commission of the European Communities, 1985.
Buscar texto completoR, Levine Stanley y United States. National Aeronautics and Space Administration., eds. Low cost fabrication of silicon carbide based ceramics and fiber reinforced composites. [Washington, DC]: National Aeronautics and Space Administration, 1995.
Buscar texto completoAntoniadis, Homer. High efficiency, low cost solar cells manufactured using "Silicon Ink" on thin crystalline silicon wafers: October 2009 - November 2010. Golden, CO: National Renewable Energy Laboratory, 2011.
Buscar texto completoRicaud, A. Implementation of low cost semicrystalline silicon solar cells process and characterization of solar grade polysilicon. Luxembourg: Commission of the European Communities, 1986.
Buscar texto completoA, Neugroschel y United States. National Aeronautics and Space Administration, eds. Heavy doping effects in high efficiency silicon solar cells: Quarterly report for period covering January 1, 1986 - March 31, 1986. [Washington, DC: National Aeronautics and Space Administration, 1986.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Ultra-low-cost room temperature SiC thin films: Final report, NASA research grant no. NAG3-1828 for the period April 8, 1996 to September 30, 1996. [Cleveland, Ohio?]: The Center, 1997.
Buscar texto completoLarsen, A. Nylandsted. Production of solar cells on the basis of low cost silicon by application of ion implantation and light-induced transient heating. Luxembourg: Commission of the European Communities, 1985.
Buscar texto completoNational Aeronautics and Space Administration (NASA) Staff. Structure of Deformed Silicon and Implications for Low Cost Solar Cells. Independently Published, 2018.
Buscar texto completoNational Aeronautics and Space Administration (NASA) Staff. Delayed Fracture of Silicon: Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Silicon Solar Array Project. Independently Published, 2018.
Buscar texto completoNational Aeronautics and Space Administration (NASA) Staff. Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites. Independently Published, 2018.
Buscar texto completoCapítulos de libros sobre el tema "Low-Cost silicon"
Fraas, Lewis M. "Terrestrial Silicon Solar Cells Today". En Low-Cost Solar Electric Power, 63–71. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07530-3_5.
Texto completoFraas, Lewis M. y Mark J. O’Neill. "Terrestrial Silicon Solar Cells Today". En Low-Cost Solar Electric Power, 61–69. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30812-3_5.
Texto completoPlais, F., C. Collet, O. Huet, P. Legagneux, D. Pribat, C. Reita y C. Walaine. "Low Temperature Polysilicon Technology: A low cost SOI technology?" En Perspectives, Science and Technologies for Novel Silicon on Insulator Devices, 63–74. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4261-8_6.
Texto completoRoy, Rabindra, Kaushik Roy y Abhijit Chatterjee. "Stress Testing: A Low Cost Alternative for Burn-in". En VLSI: Integrated Systems on Silicon, 526–39. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-0-387-35311-1_43.
Texto completoPoortmans, Jef. "Epitaxial Thin Film Crystalline Silicon Solar Cells on Low Cost Silicon Carriers". En Thin Film Solar Cells, 1–38. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470091282.ch1.
Texto completoGeng, Xinhua y Jianjun Zhang. "Study of Low-Cost Silicon Based Thin Film Solar Cells". En Proceedings of ISES World Congress 2007 (Vol. I – Vol. V), 1228–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-75997-3_246.
Texto completoAnakal, Sudhir y P. Sandhya. "Low-Cost IoT Based Spirometer Device with Silicon Pressure Sensor". En Advances in Intelligent Systems and Computing, 153–61. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2475-2_14.
Texto completoVigna, Benedetto, Fabio Pasolini, Roberto de Nuccio, Macro Capovilla, Luciano Prandi y Fabio Biganzoli. "Low Cost Silicon Coriolis’ Gyroscope Paves the Way to Consumer IMU". En NATO Science for Peace and Security Series B: Physics and Biophysics, 67–74. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3807-4_5.
Texto completoMartinuzzi, S., I. Périchaud, J. Gervais y D. Sarti. "Towards Low Cost Multicrystalline Silicon Wafers for High Efficiency Solar Cells". En Tenth E.C. Photovoltaic Solar Energy Conference, 320–23. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3622-8_82.
Texto completoSomberg, Howard. "Improvements in Direct-Cast Silicon Sheet for Low-Cost Solar Cells". En Seventh E.C. Photovoltaic Solar Energy Conference, 782–86. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3817-5_138.
Texto completoActas de conferencias sobre el tema "Low-Cost silicon"
Wolfe, Dan y Keith Goossen. "Low Cost Optofluidic Smart Glass". En Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/iprsn.2016.jw4a.3.
Texto completoZimmermann, Horst y Horst Dietrich. "Low-cost silicon receiver OEICs". En International Symposium on Optoelectonics and Microelectronics, editado por Qin-Yi Tong y Ulrich M. Goesele. SPIE, 2001. http://dx.doi.org/10.1117/12.444680.
Texto completoMede, Matt. "Low cost solar silicon production". En SPIE Solar Energy + Technology, editado por Frank E. Osterloh. SPIE, 2009. http://dx.doi.org/10.1117/12.823606.
Texto completoMott, John R., Julio A. Bragagnolo y Michael P. Hayes. "Low cost, low CO2 emission solar grade silicon". En 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5615923.
Texto completoRibeiro, J. F., S. Pimenta, H. C. Fernandes, S. B. Goncalves, M. R. Souto, A. M. Goncalves, N. A. P. de Vasconcelos, P. Monteiro y J. H. Correia. "Low-cost Non-etched Silicon Neural Probe". En 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2019. http://dx.doi.org/10.1109/ner.2019.8716910.
Texto completoCocorullo, Giuseppe, Francesco G. Della Corte, Rosario De Rosa, Ivo Rendina, Alfredo Rubino y Ezio Terzini. "Amorphous silicon waveguides and interferometers for low-cost silicon optoelectronics". En Optoelectronics and High-Power Lasers & Applications, editado por Giancarlo C. Righini, S. Iraj Najafi y Bahram Jalali. SPIE, 1998. http://dx.doi.org/10.1117/12.298212.
Texto completoAhmad, Harith, Kavintheran Thambiratnam, Tan Chee Leong, Tamil Many K. Thandavam y Rizal Ramli. "Low-cost SWIR Silicon-based Graphene Oxide Photodetector". En 2019 IEEE 9th International Nanoelectronics Conferences (INEC). IEEE, 2019. http://dx.doi.org/10.1109/inec.2019.8853864.
Texto completoSauar, Erik. "A path towards low-cost crystalline silicon PV". En 2008 33rd IEEE Photovolatic Specialists Conference (PVSC). IEEE, 2008. http://dx.doi.org/10.1109/pvsc.2008.4922455.
Texto completoNazirzadeh, M. A., Fatih B. Atar, B. Berkan Turgut y Ali K. Okyay. "Ultra-low-cost near-infrared photodetectors on silicon". En SPIE OPTO, editado por Graham T. Reed y Michael R. Watts. SPIE, 2015. http://dx.doi.org/10.1117/12.2078913.
Texto completoZhang, Peng, Bo Tang, Bin Li, Yan Yang, Ruonan liu, TingTing Li, Zhihua Li y Fujiang Lin. "Low cost test system for silicon photonics testing". En Real-time Photonic Measurements, Data Management, and Processing IV, editado por Bahram Jalali, Ming Li y Mohammad Hossein Asghari. SPIE, 2019. http://dx.doi.org/10.1117/12.2537170.
Texto completoInformes sobre el tema "Low-Cost silicon"
King, David M., Arrelaine Dameron, Paul Lichty y James Trevey. Low-Cost Encapsulation of Silicon-Based Nanopowders Final Report. Office of Scientific and Technical Information (OSTI), marzo de 2018. http://dx.doi.org/10.2172/1429761.
Texto completoCostantino, Henry, Avery Sakshaug, Chris Timmons y Abirami Dhanabalan. LOW COST MANUFACTURING OF ADVANCED SILICON-BASED ANODE MATERIALS. Office of Scientific and Technical Information (OSTI), septiembre de 2019. http://dx.doi.org/10.2172/1567700.
Texto completoAntoniadis, H. High Efficiency, Low Cost Solar Cells Manufactured Using 'Silicon Ink' on Thin Crystalline Silicon Wafers. Office of Scientific and Technical Information (OSTI), marzo de 2011. http://dx.doi.org/10.2172/1010461.
Texto completoRingel, Steven. III-V/Active-Silicon Integration for Low-Cost High-Performance Concentrator Photovoltaics. Office of Scientific and Technical Information (OSTI), diciembre de 2017. http://dx.doi.org/10.2172/1435637.
Texto completoROHATGI, A., S. NARASIMHA, J. MOSCHER, A. EBONG, S. KAMRA, T. KRYGOWSKI, P. DOSHI, A. RISTOW, V. YELUNDUR y DOUGLAS S. RUBY. Fundamental understanding and development of low-cost, high-efficiency silicon solar cells. Office of Scientific and Technical Information (OSTI), mayo de 2000. http://dx.doi.org/10.2172/755468.
Texto completoBuonassisi, Tonio. Defect Engineering, Cell Processing, and Modeling for High-Performance, Low-Cost Crystalline Silicon Photovoltaics. Office of Scientific and Technical Information (OSTI), febrero de 2013. http://dx.doi.org/10.2172/1064431.
Texto completoSturm, James. HOLE-BLOCKING LAYERS FOR SILICON/ORGANIC HETEROJUNCTIONS: A NEW CLASS OF HIGH-EFFICIENCY LOW-COST PV. Office of Scientific and Technical Information (OSTI), diciembre de 2017. http://dx.doi.org/10.2172/1421786.
Texto completoAgarwal, Sumit. Final Report: New Approaches to Low-Cost Scalable Doping of Interdigitated back Contact Silicon Solar Cells. Office of Scientific and Technical Information (OSTI), marzo de 2021. http://dx.doi.org/10.2172/1843023.
Texto completoImhof, Howard y Rchardi Stephenson. Improvement of screen-printable metallization paste for low-cost silicon solar cells utilizing silver coated copper powders. Office of Scientific and Technical Information (OSTI), febrero de 2024. http://dx.doi.org/10.2172/2315628.
Texto completoLiu, Zhe, Sara Bonner, Tonio Buonassisi y Emanuel Sachs. Low Cost (CAPEX and variable): Tool design for cell and module fabrication with thin, free-standing silicon wafers. Office of Scientific and Technical Information (OSTI), abril de 2020. http://dx.doi.org/10.2172/1618395.
Texto completo