Literatura académica sobre el tema "Lipid membranes, mechanical properties, atomic force microscopy, scattering"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Lipid membranes, mechanical properties, atomic force microscopy, scattering".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Lipid membranes, mechanical properties, atomic force microscopy, scattering"
Domingues, Marco M., Bárbara Gomes, Axel Hollmann y Nuno C. Santos. "25-Hydroxycholesterol Effect on Membrane Structure and Mechanical Properties". International Journal of Molecular Sciences 22, n.º 5 (4 de marzo de 2021): 2574. http://dx.doi.org/10.3390/ijms22052574.
Texto completoCosentino, Katia, Edward Hermann, Nicolai von Kügelgen, Joseph D. Unsay, Uris Ros y Ana J. García-Sáez. "Force Mapping Study of Actinoporin Effect in Membranes Presenting Phase Domains". Toxins 13, n.º 9 (18 de septiembre de 2021): 669. http://dx.doi.org/10.3390/toxins13090669.
Texto completoSadžak, Anja, Janez Mravljak, Nadica Maltar-Strmečki, Zoran Arsov, Goran Baranović, Ina Erceg, Manfred Kriechbaum, Vida Strasser, Jan Přibyl y Suzana Šegota. "The Structural Integrity of the Model Lipid Membrane during Induced Lipid Peroxidation: The Role of Flavonols in the Inhibition of Lipid Peroxidation". Antioxidants 9, n.º 5 (15 de mayo de 2020): 430. http://dx.doi.org/10.3390/antiox9050430.
Texto completoBasu, Amrita, Pabitra Maity, Prasanta Karmakar y Sanat Karmakar. "Preparation of Giant Unilamellar Vesicles and Solid Supported Bilayer from Large Unilamellar Vesicles: Model Biological Membranes". Journal of Surface Science and Technology 32, n.º 3-4 (5 de abril de 2017): 85. http://dx.doi.org/10.18311/jsst/2016/7753.
Texto completoBlessing, Bailey, Cory Trout, Abneris Morales, Karleena Rybacki, Stacy A. Love, Guillaume Lamoureux, Sean M. O’Malley, Xiao Hu y David Salas-de la Cruz. "The Impact of Composition and Morphology on Ionic Conductivity of Silk/Cellulose Bio-Composites Fabricated from Ionic Liquid and Varying Percentages of Coagulation Agents". International Journal of Molecular Sciences 21, n.º 13 (30 de junio de 2020): 4695. http://dx.doi.org/10.3390/ijms21134695.
Texto completoHolmbäck, Jan, Vibhu Rinwa, Tobias Halthur, Puneet Rinwa, Anders Carlsson y Bengt Herslöf. "AKVANO®: A Novel Lipid Formulation System for Topical Drug Delivery—In Vitro Studies". Pharmaceutics 14, n.º 4 (5 de abril de 2022): 794. http://dx.doi.org/10.3390/pharmaceutics14040794.
Texto completoZhou, Jun, Xiaoqing Cao, Linlin Li, Xingcheng Cui y Yu Fu. "A Novel Strategy for Fabricating a Strong Nanoparticle Monolayer and Its Enhanced Mechanism". Nanomaterials 9, n.º 10 (16 de octubre de 2019): 1468. http://dx.doi.org/10.3390/nano9101468.
Texto completoRetana Moreira, Lissette, Alexa Prescilla-Ledezma, Alberto Cornet-Gomez, Fátima Linares, Ana Belén Jódar-Reyes, Jorge Fernandez, Ana Karina Ibarrola Vannucci, Luis Miguel De Pablos y Antonio Osuna. "Biophysical and Biochemical Comparison of Extracellular Vesicles Produced by Infective and Non-Infective Stages of Trypanosoma cruzi". International Journal of Molecular Sciences 22, n.º 10 (13 de mayo de 2021): 5183. http://dx.doi.org/10.3390/ijms22105183.
Texto completoYan, Bo, Juan Ren, Yue Liu, Huarong Huang, Xi Zheng y Qingze Zou. "Study of Cholesterol Repletion Effect on Nanomechanical Properties of Human Umbilical Vein Endothelial Cell Via Rapid Broadband Atomic Force Microscopy". Journal of Biomechanical Engineering 139, n.º 3 (23 de enero de 2017). http://dx.doi.org/10.1115/1.4035260.
Texto completoRuskamo, Salla, Arne Raasakka, Jan Skov Pedersen, Anne Martel, Karel Škubník, Tamim Darwish, Lionel Porcar y Petri Kursula. "Human myelin proteolipid protein structure and lipid bilayer stacking". Cellular and Molecular Life Sciences 79, n.º 8 (12 de julio de 2022). http://dx.doi.org/10.1007/s00018-022-04428-6.
Texto completoTesis sobre el tema "Lipid membranes, mechanical properties, atomic force microscopy, scattering"
Baiti, Risa Nurin. "Characterization of nano-mechanical properties of biological lipid membranes with circular mode atomic force microscopy". Thesis, Compiègne, 2017. http://www.theses.fr/2017COMP2403/document.
Texto completoCell membranes are involved in many cellular processes: drugs and ions diffusion, signal transduction, energy generation, cell development (fusion and fission). Phospholipid bilayers are the main components of cell membranes, they act as a dynamic barrier protecting cellular biochemical reactions. The determination of biochemical and mechanical properties of lipid bilayers and their evolution with environmental conditions is necessary to study the nature of cellular processes and the influence of external agents (mechanical resistance, permeability, and biological response). To conduct such characterizations, simplified biomimetic membrane models, such as supported lipid bilayers (SLBs), were developed. Among the available characterization techniques, atomic force microscopy (AFM) has been widely used to study the nanoscale organization of SLBs under physiological conditions. AFM can yield high resolution images and it can also be used to quantify the mechanical resistance of SLBs by means of punch through experiments. For 30 years, AFM has been through many developments. Very recently, the Circular Mode AFM (CM-AFM) has been developed at the Université de Technologie de Compiègne. CM-AFM is able to generate a sliding movement of the AFM tip on the sample at high, constant and continuous velocity and to measure the lateral friction forces fast and accurately simultaneously with the vertical forces. For the first time CM-AFM is used to characterize biological samples under physiological conditions, allowing the simultaneous measurement of both the punch-through and the friction forces as a function of the sliding velocity. It offers for the first time the ability to describe the friction behavior of SLBs in complement of the punch-through force. Due to the important need for quantitative measurement, optimization of the CM-AFM protocol has been done first. Protocol of scanner calibration has been successfully established to ensure the accuracy of sliding velocity. Besides, the protocol for tip calibration, based on wedge method and a scratched sample, is also made to determine the lateral force calibration constant. We have employed CM-AFM to measure the tribological properties of solid samples to improve the equipment under liquid medium. Then, the mechanical properties (punchthrough and friction forces) of SLBs were measured as function of the sliding velocity. Pure and mixed SLBs were prepared by the vesicle fusion method. Various media were also used to study the effect of monovalent cations to the mechanical properties of SLBs. In all cases, the friction force increases linearly with the sliding velocity allowing us to deduce the friction viscous coefficient. As expected both the punchthrough force and the friction viscous coefficient are influenced by the composition of lipid mixtures, by the nature of cations in liquid medium, and by the length of hydrocarbon chains but not in a similar fashion. The interpretation of the evolution of the viscous friction force coefficient with the studied system is particularly tricky as the friction force could be influenced by interface or volume properties. This problematic will be the challenge for the next studies. Nevertheless, our results illustrate how powerful the CM-AFM technique is and it opens wide opportunities to characterize other biological samples (cells and tissues) to gain a better understanding of the elementary mechanisms of friction
berti, debora, costanza montis, lucrezia caselli y jacopo cardellini. "Probing the nanomechanical properties of lamellar and nonlamellar lipid membranes". Doctoral thesis, 2022. http://hdl.handle.net/2158/1262270.
Texto completoActas de conferencias sobre el tema "Lipid membranes, mechanical properties, atomic force microscopy, scattering"
Shamitko-Klingensmith, Nicole, Kelley M. Wambaugh, Kathleen A. Burke, George J. Magnone y Justin Legleiter. "Correlation of Atomic Force Microscopy Tapping Forces to Mechanical Properties of Lipid Membranes". En ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70233.
Texto completo