Artículos de revistas sobre el tema "Linear induction accelerators"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Linear induction accelerators.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Linear induction accelerators".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Bayless, John R., Craig P. Burkhart y Richard J. Adler. "Linear induction accelerators for industrial applications". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 40-41 (abril de 1989): 1142–45. http://dx.doi.org/10.1016/0168-583x(89)90558-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Wang, Shao-Heng y Jian-Jun Deng. "Acceleration modules in linear induction accelerators". Chinese Physics C 38, n.º 5 (mayo de 2014): 057005. http://dx.doi.org/10.1088/1674-1137/38/5/057005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Bayless, John R. y Richard J. Adler. "Linear induction accelerators for radiation processing". International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 31, n.º 1-3 (enero de 1988): 327–31. http://dx.doi.org/10.1016/1359-0197(88)90146-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Matsuzawa, Hidenori, Haruhisa Wada, Satoshi Mori y Tadashi Yamamoto. "Induction Linear Accelerators with High-TcBulk Superconductor Lenses". Japanese Journal of Applied Physics 30, Part 1, No. 11A (15 de noviembre de 1991): 2972–73. http://dx.doi.org/10.1143/jjap.30.2972.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Humphries, Stanley. "Quadrupole field geometries for intense electron beam acceleration". Laser and Particle Beams 14, n.º 3 (septiembre de 1996): 519–28. http://dx.doi.org/10.1017/s0263034600010193.

Texto completo
Resumen
High-intensity electron beams could be focused in low-frequency RF accelerators and induction linear accelerators by adding transverse components to the accelerating electric field. Calculations with a 3D code show that quasielectrostatic focusing is sufficient to transport kiloampere electron beams in RF accelerators and the high-energy sections of induction accelerators. The elimination of conventional magnetic focusing systems could lead to reductions in the volume and weight of high-current electron accelerators. Two novel quadrupole geometries are investigated: a periodic array of spherical electrodes with alternating displacements and a set of plate electrodes with elliptical apertures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Herrmannsfeldt, W. B. y Denis Keefe. "Induction linac drivers for heavy ion fusion". Laser and Particle Beams 8, n.º 1-2 (enero de 1990): 81–88. http://dx.doi.org/10.1017/s0263034600007849.

Texto completo
Resumen
The Heavy Ion Fusion Accelerator Research (HIFAR) program of the U.S. Dept. of Energy has for several years concentrated on developing linear induction accelerators as Inertial Fusion (IF) drivers. This accelerator technology is suitable for the IF application because it is readily capable of accelerating short, intense pulses of charged particles with good electrical efficiency. The principal technical difficulty is in injecting and transporting the intense pulses while maintaining the necessary beam quality. The approach used has been to design a system of multiple beams so that not all of the charge has to be confined in a single beam line. The beams are finally brought together in a common focus at the target. This paper will briefly present the status and future plans of the program, and will also briefly review systems study results for HIF.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ekdahl, Carl. "The Resistive-Wall Instability in Multipulse Linear Induction Accelerators". IEEE Transactions on Plasma Science 45, n.º 5 (mayo de 2017): 811–18. http://dx.doi.org/10.1109/tps.2017.2681040.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Orzechowski, T., E. Scharlemann, B. Anderson, V. Neil, W. Fawley, D. Prosnitz, S. Yarema et al. "High-gain free electron lasers using induction linear accelerators". IEEE Journal of Quantum Electronics 21, n.º 7 (julio de 1985): 831–44. http://dx.doi.org/10.1109/jqe.1985.1072732.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Humphries, Stanley. "Simulations of longitudinal instabilities in ion induction linear accelerators". Laser and Particle Beams 10, n.º 3 (septiembre de 1992): 511–29. http://dx.doi.org/10.1017/s0263034600006765.

Texto completo
Resumen
This article describes computer simulations of a longitudinal instability that affects induction linear accelerators for high-power ion beams. The instability is driven by axial bunching of ions when they interact with acceleration gaps connected to input transmission lines. The process is similar to the longitudinal resistive wall instability in continuous systems. Although bunching instabilities do not appear in existing induction linear accelerators for electrons, they may be important for proposed ion accelerators for heavy ion fusion. The simulation code is a particle-in-cell model that describes a drifting beam crossing discrete acceleration gaps with a self-consistent calculation of axial space charge forces. In present studies with periodic boundaries, the model predicts values for quantities such as the stabilizing axial velocity spread that are in good agreement with analytic theories. The simulations describe the nonlinear growth of the instability and its saturation with increased axial emittance. They show that an initially cold beam is subject to a severe disruption that drives the emittance well above the stabilized saturation levels. The simulation results confirm that axial space charge forces do not reduce axial beam bunching. In fact, space charge effects increase the axial velocity spread required for stability. With simple resistive driving circuits, the model predicts velocity spreads that are too high for heavy ion fusion applications. Several processes currently under study may mitigate this result, including advanced pulsed power switching methods, enhanced gap capacitance, and an energy spread impressed between individual beams of a multibeam transport system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lagunas-Solar, Manuel C. "Induction-linear accelerators for food processing with ionizing radiation". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 10-11 (mayo de 1985): 987–93. http://dx.doi.org/10.1016/0168-583x(85)90155-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh y A. S. Sergeev. "High-Power Free-Electron Masers Based on Linear Induction Accelerators". Radiophysics and Quantum Electronics 63, n.º 12 (mayo de 2021): 931–75. http://dx.doi.org/10.1007/s11141-021-10105-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh y A. S. Sergeev. "High-Power Free-Electron Masers Based on Linear Induction Accelerators". Izvestiya vysshikh uchebnykh zavedenii. Radiofizika 63, n.º 12 (2020): 1032–81. http://dx.doi.org/10.52452/00213462_2020_63_12_1032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Zhang, H., K. Zhang, Y. Shen, X. Jiang, P. Dong, Y. Liu, Y. Wang et al. "Note: A pulsed laser ion source for linear induction accelerators". Review of Scientific Instruments 86, n.º 1 (enero de 2015): 016104. http://dx.doi.org/10.1063/1.4905363.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Peach, Ken y Carl Ekdahl. "Particle Beam Radiography". Reviews of Accelerator Science and Technology 06 (enero de 2013): 117–42. http://dx.doi.org/10.1142/s1793626813300065.

Texto completo
Resumen
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Ekdahl, Carl y Rodney McCrady. "Suppression of Beam Breakup in Linear Induction Accelerators by Stagger Tuning". IEEE Transactions on Plasma Science 48, n.º 10 (octubre de 2020): 3589–99. http://dx.doi.org/10.1109/tps.2020.3019999.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Hovingh, Jack, Victor O. Brady, Andris Faltens, Denis Keefe y Edward P. Lee. "Heavy-Ion Linear Induction Accelerators as Drivers for Inertial Fusion Power Plants". Fusion Technology 13, n.º 2 (febrero de 1988): 255–78. http://dx.doi.org/10.13182/fst88-a25104.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Rosenthal, S. E. "Characterization of electron flow in negative- and positive-polarity linear-induction accelerators". IEEE Transactions on Plasma Science 19, n.º 5 (1991): 822–30. http://dx.doi.org/10.1109/27.108419.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Hotta, Eiki y Izumi Hayashi. "Bidirectional pulser for linear induction accelerators made from line cavities with external pulse injection." Kakuyūgō kenkyū 56, n.º 1 (1986): 52–58. http://dx.doi.org/10.1585/jspf1958.56.52.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Burris-Mog, T. J., M. A. Chavez, M. A. Espy, M. J. Manard, D. C. Moir, J. B. Schillig, R. Trainham y P. L. Volegov. "Calibration of two compact permanent magnet spectrometers for high current electron linear induction accelerators". Review of Scientific Instruments 89, n.º 7 (julio de 2018): 073303. http://dx.doi.org/10.1063/1.5029837.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Miller, R. B., B. M. Marder, P. D. Coleman y R. E. Clark. "The effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators". Journal of Applied Physics 63, n.º 4 (15 de febrero de 1988): 997–1008. http://dx.doi.org/10.1063/1.341136.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Bolyukh, V. F. y I. S. Shchukin. "Influence of limiting the duration of the armature winding current on the operating indicators of a linear pulse electromechanical induction type converter". Electrical Engineering & Electromechanics, n.º 6 (3 de diciembre de 2021): 3–10. http://dx.doi.org/10.20998/2074-272x.2021.6.01.

Texto completo
Resumen
Introduction. Linear pulse electromechanical converters of induction type (LPECIT) are used in many branches of science and technology as shock-power devices and electromechanical accelerators. In them, due to the phase shift between the excitation current in the inductor winding and the induced current in the armature winding, in addition to the initial electrodynamic forces (EDF) of repulsion, subsequent EDF of attraction also arise. As a result, the operating indicators of LPECIT are reduced. The purpose of the article is to increase the performance of linear pulse electromechanical induction-type converters when operating as a shock-power device and an electromechanical accelerator by limiting the duration of the induced current in the armature winding until its polarity changes. Methodology. To analyze the electromechanical characteristics and indicators of LPECIT, a mathematical model was used, in which the solutions of equations describing interrelated electrical, magnetic, mechanical and thermal processes are presented in a recurrent form. Results. To eliminate the EDF of attraction between the LPIECIT windings, it is proposed to limit the duration of the induced current in the armature winding before changing its polarity by connecting a rectifier diode to it. It was found that when the converter operates as a shock-power device without limiting the armature winding current, the value of the EDF pulse after reaching the maximum value decreases by the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion, taking into account the EDF pulse, recoil force, current and heating temperature of the inductor winding, increases. When the converter operates as an electromechanical accelerator without limiting the armature winding current, the speed and efficiency decrease, taking into account the kinetic energy and voltage of the capacitive energy storage at the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion increases, the temperature rise of the armature winding decreases, the value of the maximum efficiency increases, reaching 16.16 %. Originality. It has been established that due to the limitation of the duration of the armature winding current, the power indicators of the LPECIT increase when operating as a shock-power device and the speed indicators when the LPECIT operates as an electromechanical accelerator. Practical value. It was found that with the help of a rectifier diode connected to the multi-turn winding of the armature, unipolarity of the current is ensured, which leads to the elimination of the EDF of attraction and an increase in the performance of the LPECIT.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Annenkov, Vladimir, Evgeny Berendeev, Evgeniia Volchok y Igor Timofeev. "Particle-in-Cell Simulations of High-Power THz Generator Based on the Collision of Strongly Focused Relativistic Electron Beams in Plasma". Photonics 8, n.º 6 (21 de mayo de 2021): 172. http://dx.doi.org/10.3390/photonics8060172.

Texto completo
Resumen
Based on particle-in-cell simulations, we propose to generate sub-nanosecond pulses of narrowband terahertz radiation with tens of MW power using unique properties of kiloampere relativistic (2 MeV) electron beams produced by linear induction accelerators. Due to small emittance of such beams, they can be focused into millimeter and sub-millimeter spots comparable in sizes with the wavelength of THz radiation. If such a beam is injected into a plasma, it becomes unstable against the two-stream instability and excites plasma oscillations that can be converted to electromagnetic waves at the plasma frequency and its harmonics. It is shown that several radiation mechanisms with high efficiency of power conversion (∼1%) come into play when the radial size of the beam–plasma system becomes comparable with the wavelength of the emitted waves.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Korsbäck, Anders, Flyura Djurabekova y Walter Wuensch. "Statistics of vacuum electrical breakdown clustering and the induction of follow-up breakdowns". AIP Advances 12, n.º 11 (1 de noviembre de 2022): 115317. http://dx.doi.org/10.1063/5.0111677.

Texto completo
Resumen
Understanding the underlying physics of vacuum electrical breakdown is of relevance for the development of technologies where breakdown is of significance, either as an intended part of device operation or as a cause of failure. One prominent contemporary case of the latter is high-gradient linear accelerators, where structures must be able to operate with both high surface electric fields and low breakdown rates. Temporal clustering of breakdowns has for long been observed in accelerating structures. In this work, the statistics of breakdown clustering were studied using data collected by a system applying DC voltage pulses over parallel disk electrodes in a vacuum chamber. It was found that the obtained distributions of cluster sizes can be explained by postulating that every breakdown induces a number of follow-up breakdowns that are Poisson-distributed with λ < 1. It was also found that the primary breakdown rate, i.e., the breakdown rate after discounting follow-up breakdowns, fluctuates over time but has no discernible correlation with cluster size. Considered together, these results provide empirical support for the interpretation that primary and follow-up breakdowns are categorically different kinds of events with different underlying causes and mechanisms. Furthermore, they support the interpretation that there is an actual causal relationship between the breakdowns in a cluster rather than them simply being concurrent events with a common underlying cause.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Peskov, N. Yu, N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, V. Yu Zaslavsky, A. K. Kaminsky, S. N. Sedykh et al. "Development of powerful long-pulse Bragg FELs operating from sub-THz to THz bands based on linear induction accelerators: recent results and projects". EPJ Web of Conferences 195 (2018): 01010. http://dx.doi.org/10.1051/epjconf/201819501010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Logachev, P. V., G. I. Kuznetsov, A. A. Korepanov, A. V. Akimov, S. V. Shiyankov, O. A. Pavlov, D. A. Starostenko y G. A. Fat’kin. "LIU-2 linear induction accelerator". Instruments and Experimental Techniques 56, n.º 6 (noviembre de 2013): 672–79. http://dx.doi.org/10.1134/s0020441213060195.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Bresie, D. A., J. A. Andrews y S. W. Ingram. "Parametric approach to linear induction accelerator design". IEEE Transactions on Magnetics 27, n.º 1 (enero de 1991): 390–93. http://dx.doi.org/10.1109/20.101063.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Sandalov, Evgeny S., Stanislav L. Sinitsky, Alexander V. Burdakov, Petr A. Bak, Kirill I. Zhivankov, Ermek K. Kenzhebulatov, Pavel V. Logachev, Dmitrii I. Skovorodin, Alexander R. Akhmetov y Oleg A. Nikitin. "Electrodynamic System of the Linear Induction Accelerator Module". IEEE Transactions on Plasma Science 49, n.º 2 (febrero de 2021): 718–28. http://dx.doi.org/10.1109/tps.2020.3045345.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Starostenko, D., A. Akimov, P. Bak, D. Bolkhovityanov, Ya Kulenko, P. Logachev, D. Nikiforov et al. "Beam Dynamics of Linear Induction Accelerator LIA-2". Physics of Particles and Nuclei Letters 19, n.º 4 (26 de julio de 2022): 393–96. http://dx.doi.org/10.1134/s1547477122040197.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Huang Ziping, 黄子平, 蒋薇 Jiang Wei y 叶毅 Ye Yi. "Reset system for multi-pulse linear induction accelerator". High Power Laser and Particle Beams 26, n.º 4 (2014): 45101. http://dx.doi.org/10.3788/hplpb20142604.45101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Zhang Huang, 张篁, 陈德彪 Chen Debiao, 江孝国 Jiang Xiaoguo, 夏连胜 Xia Liansheng, 刘星光 Liu Xingguang, 谌怡 Chen Yi y 章林文 Zhang Linwen. "Experimental research on photocathode for linear induction accelerator". High Power Laser and Particle Beams 22, n.º 3 (2010): 583–86. http://dx.doi.org/10.3788/hplpb20102203.0583.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei y 刘大刚 Liu Dagang. "Simulation of transport process for linear induction accelerator". High Power Laser and Particle Beams 22, n.º 4 (2010): 913–17. http://dx.doi.org/10.3788/hplpb20102204.0913.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Ekdahl, Carl, Joshua E. Coleman y Brian Trent McCuistian. "Beam Breakup in an Advanced Linear Induction Accelerator". IEEE Transactions on Plasma Science 44, n.º 7 (julio de 2016): 1094–102. http://dx.doi.org/10.1109/tps.2016.2571123.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Sharma, Archana, K. Senthil, D. D. Praveen Kumar, S. Mitra, V. Sharma, A. Patel, D. K. Sharma et al. "Preliminary results of Linear Induction Accelerator LIA-200". Journal of Instrumentation 5, n.º 05 (4 de mayo de 2010): P05001. http://dx.doi.org/10.1088/1748-0221/5/05/p05001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Chen, Yinbao y M. Reiser. "Radial focusing in a linear induction accelerator gap". Journal of Applied Physics 65, n.º 9 (mayo de 1989): 3324–28. http://dx.doi.org/10.1063/1.342643.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Ekdahl, Carl. "Tuning the DARHT Long-Pulse Linear Induction Accelerator". IEEE Transactions on Plasma Science 41, n.º 10 (octubre de 2013): 2774–80. http://dx.doi.org/10.1109/tps.2013.2256933.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Ekdahl, Carl, E. O. Abeyta, P. Aragon, R. Archuleta, G. Cook, D. Dalmas, K. Esquibel et al. "Beam Dynamics in a Long-pulse Linear Induction Accelerator". Journal of the Korean Physical Society 59, n.º 6(1) (15 de diciembre de 2011): 3448–52. http://dx.doi.org/10.3938/jkps.59.3448.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Ekdahl, Carl, Carl A. Carlson, Daniel K. Frayer, B. Trent McCuistian, Christopher B. Mostrom, Martin E. Schulze y Carsten H. Thoma. "Emittance Growth in the DARHT-II Linear Induction Accelerator". IEEE Transactions on Plasma Science 45, n.º 11 (noviembre de 2017): 2962–73. http://dx.doi.org/10.1109/tps.2017.2755861.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Akimov, A. V., V. E. Akimov, P. A. Bak, V. D. Bochkov, L. T. Vekhoreva, A. A. Korepanov, P. V. Logachev, A. N. Panov, D. A. Starostenko y O. V. Shilin. "A pulse power supply of the linear induction accelerator". Instruments and Experimental Techniques 55, n.º 2 (marzo de 2012): 218–24. http://dx.doi.org/10.1134/s0020441212010241.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Ekdahl, Carl. "Electron-Beam Corkscrew Motion in an Advanced Linear Induction Accelerator". IEEE Transactions on Plasma Science 49, n.º 11 (noviembre de 2021): 3548–53. http://dx.doi.org/10.1109/tps.2021.3120877.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei y 刘大刚 Liu Dagang. "Numerical simulation of beam focusing magnetic field in linear induction accelerator". High Power Laser and Particle Beams 22, n.º 6 (2010): 1331–34. http://dx.doi.org/10.3788/hplpb20102206.1331.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Batrakov, Aleksandr M., Pavel V. Logatchev, Anton V. Pavlenko, Vladislav Ya Sazansky y Georgy A. Fatkin. "The Control System of Linear Induction Accelerator for X-Ray Radiography". Siberian Journal of Physics 5, n.º 3 (1 de octubre de 2010): 98–105. http://dx.doi.org/10.54362/1818-7919-2010-5-3-98-105.

Texto completo
Resumen
The structure and hardware of control system for flash X-Ray radiography complex currently under construction in BINP, SB RAS are discussed in this paper. Special features of this control system are: high amount of channels, nanosecond times of main processes, work in environment of powerful noises from pulsed high-voltage devices
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Ekdahl, C., E. O. Abeyta, H. Bender, W. Broste, C. Carlson, L. Caudill, K. C. D. Chan et al. "Initial electron-beam results from the DARHT-II linear induction accelerator". IEEE Transactions on Plasma Science 33, n.º 2 (abril de 2005): 892–900. http://dx.doi.org/10.1109/tps.2005.845115.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Ekdahl, Carl, P. Allison, J. E. Coleman, T. Kaupilla, B. T. McCuistian, D. C. Moir y M. Schulze. "Steering an intense relativistic electron beam in a linear induction accelerator". Review of Scientific Instruments 91, n.º 2 (1 de febrero de 2020): 026102. http://dx.doi.org/10.1063/1.5125421.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Petzoldt, Ronald, Neil Alexander, Lane Carlson, Eric Cotner, Dan Goodin y Robert Kratz. "Linear Induction Accelerator with Magnetic Steering for Inertial Fusion Target Injection". Fusion Science and Technology 68, n.º 2 (septiembre de 2015): 308–13. http://dx.doi.org/10.13182/fst14-915.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Yu Haijun, 禹海军, 朱隽 Zhu Jun, 江孝国 Jiang Xiaoguo, 王远 Wang Yuan, 陈楠 Chen Nan, 张振涛 Zhang Zhentao, 戴文华 Dai Wenhua y 刘承俊 Liu Chengjun. "Damage diagnosis for bremsstrahlung converter target of Dragon-Ⅰ linear induction accelerator". High Power Laser and Particle Beams 23, n.º 4 (2011): 1035–38. http://dx.doi.org/10.3788/hplpb20112304.1035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Ray, R. y A. D. Datta. "An approach to the development of a small-scale linear induction accelerator". Journal of Physics D: Applied Physics 21, n.º 9 (14 de septiembre de 1988): 1336–41. http://dx.doi.org/10.1088/0022-3727/21/9/004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Bogdan, O. V., V. I. Karas’, E. A. Kornilov y O. V. Manuilenko. "2.5-Dimensional numerical simulation of a high-current ion linear induction accelerator". Plasma Physics Reports 34, n.º 8 (agosto de 2008): 667–77. http://dx.doi.org/10.1134/s1063780x08080059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Ekdahl, Carl. "The Ion-Hose Instability in a High-Current Multipulse Linear Induction Accelerator". IEEE Transactions on Plasma Science 47, n.º 1 (enero de 2019): 300–306. http://dx.doi.org/10.1109/tps.2018.2872472.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Ekdahl, C., E. O. Abeyta, P. Aragon, R. Archuleta, R. Bartsch, H. Bender, R. Briggs et al. "Long-pulse beam stability experiments on the DARHT-II linear induction accelerator". IEEE Transactions on Plasma Science 34, n.º 2 (abril de 2006): 460–66. http://dx.doi.org/10.1109/tps.2006.872481.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Denno, K. "Longitudinal and Radial Mhd Linear Induction Accelerator with Hot Conducting Plasma Core". IEEE Transactions on Nuclear Science 32, n.º 5 (octubre de 1985): 3216–18. http://dx.doi.org/10.1109/tns.1985.4334324.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía