Literatura académica sobre el tema "Linear equations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Linear equations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Linear equations"
Rohn, Jiří. "Interval solutions of linear interval equations". Applications of Mathematics 35, n.º 3 (1990): 220–24. http://dx.doi.org/10.21136/am.1990.104406.
Texto completoKurzweil, Jaroslav y Alena Vencovská. "Linear differential equations with quasiperiodic coefficients". Czechoslovak Mathematical Journal 37, n.º 3 (1987): 424–70. http://dx.doi.org/10.21136/cmj.1987.102170.
Texto completoPatel, Roshni V. y Jignesh S. Patel. "Optimization of Linear Equations using Genetic Algorithms". Indian Journal of Applied Research 2, n.º 3 (1 de octubre de 2011): 56–58. http://dx.doi.org/10.15373/2249555x/dec2012/19.
Texto completoFraňková, Dana. "Substitution method for generalized linear differential equations". Mathematica Bohemica 116, n.º 4 (1991): 337–59. http://dx.doi.org/10.21136/mb.1991.126028.
Texto completoSchwabik, Štefan. "Linear Stieltjes integral equations in Banach spaces". Mathematica Bohemica 124, n.º 4 (1999): 433–57. http://dx.doi.org/10.21136/mb.1999.125994.
Texto completoCecchi, Mariella, Zuzana Došlá, Mauro Marini y Ivo Vrkoč. "Asymptotic properties for half-linear difference equations". Mathematica Bohemica 131, n.º 4 (2006): 347–63. http://dx.doi.org/10.21136/mb.2006.133970.
Texto completoDavies, Alan y Rainer Kress. "Linear Integral Equations". Mathematical Gazette 74, n.º 470 (diciembre de 1990): 405. http://dx.doi.org/10.2307/3618171.
Texto completoS., F. y Rainer Kress. "Linear Integral Equations." Mathematics of Computation 56, n.º 193 (enero de 1991): 379. http://dx.doi.org/10.2307/2008551.
Texto completoSTEWART, G. W. "Solving Linear Equations". Science 236, n.º 4800 (24 de abril de 1987): 461–62. http://dx.doi.org/10.1126/science.236.4800.461.
Texto completoPAN, V. y J. H. REIF. "Response:Solving Linear Equations". Science 236, n.º 4800 (24 de abril de 1987): 462–63. http://dx.doi.org/10.1126/science.236.4800.462.
Texto completoTesis sobre el tema "Linear equations"
Yesilyurt, Deniz. "Solving Linear Diophantine Equations And Linear Congruential Equations". Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-19247.
Texto completoChen, Huyuan. "Fully linear elliptic equations and semilinear fractionnal elliptic equations". Thesis, Tours, 2014. http://www.theses.fr/2014TOUR4001/document.
Texto completoThis thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term
Goedhart, Eva Govinda. "Explicit bounds for linear difference equations /". Electronic thesis, 2005. http://etd.wfu.edu/theses/available/etd-05102005-222845/.
Texto completoJonklass, Raymond. "Learners' strategies for solving linear equations". Thesis, Stellenbosch : Stellenbosch University, 2002. http://hdl.handle.net/10019.1/52915.
Texto completoENGLISH ABSTRACT: Algebra deals amongst others with the relationship between variables. It differs from Arithmetic amongst others as there is not always a numerical solution to the problem. An algebraic expression can even be the solution to the problem in Algebra. The variables found in Algebra are often represented by letters such as X, y, etc. Equations are an integral part of Algebra. To solve an equation, the value of an unknown must be determined so that the left hand side of the equation is equal to the right hand side. There are various ways in which the solving of equations can be taught. The purpose of this study is to determine the existence of a cognitive gap as described by Herseovies & Linchevski (1994) in relation to solving linear equations. When solving linear equations, an arithmetical approach is not always effective. A new way of structural thinking is needed when solving linear equations in their different forms. In this study, learners' intuitive, informal ways of solving linear equations were examined prior to any formal instruction and before the introduction of algebraic symbols and notation. This information could help educators to identify the difficulties learners have when moving from solving arithmetical equations to algebraic equations. The learners' errors could help educators plan effective ways of teaching strategies when solving linear equations. The research strategy for this study was both quantitative and qualitative. Forty-two Grade 8 learners were chosen to individually do assignments involving different types of linear equations. Their responses were recorded, coded and summarised. Thereafter the learners' responses were interpreted, evaluated and analysed. Then a representative sample of fourteen learners was chosen randomly from the same class and semi-structured interviews were conducted with them From these interviews the learners' ways of thinking when solving linear equations, were probed. This study concludes that a cognitive gap does exist in the context of the investigation. Moving from arithmetical thinking to algebraic thinking requires a paradigm shift. To make adequate provision for this change in thinking, careful curriculum planning is required.
AFRIKAANSE OPSOMMING: Algebra behels onder andere die verwantskap tussen veranderlikes. Algebra verskil van Rekenkunde onder andere omdat daar in Algebra nie altyd 'n numeriese oplossing vir die probleem is nie. InAlgebra kan 'n algebraïese uitdrukking somtyds die oplossing van 'n probleem wees. Die veranderlikes in Algebra word dikwels deur letters soos x, y, ens. voorgestel. Vergelykings is 'n integrale deel van Algebra. Om vergelykings op te los, moet 'n onbekende se waarde bepaal word, om die linkerkant van die vergelyking gelyk te maak aan die regterkant. Daar is verskillende maniere om die oplossing van algebraïese vergelykings te onderrig. Die doel van hierdie studie is om die bestaan van 'n sogenaamde "kognitiewe gaping" soos beskryf deur Herseovies & Linchevski (1994), met die klem op lineêre vergelykings, te ondersoek. Wanneer die oplossing van 'n linêere vergelyking bepaal word, is 'n rekenkundige benadering nie altyd effektiefnie. 'n Heel nuwe, strukturele manier van denke word benodig wanneer verskillende tipes linêere vergelykings opgelos word. In hierdie studie word leerders se intuitiewe, informele metodes ondersoek wanneer hulle lineêre vergelykings oplos, voordat hulle enige formele metodes onderrig is en voordat hulle kennis gemaak het met algebraïese simbole en notasie. Hierdie inligting kan opvoeders help om leerders se kognitiewe probleme in verband met die verskil tussen rekenkundige en algebraïese metodes te identifiseer.Die foute wat leerders maak, kan opvoeders ook help om effektiewe onderrigmetodes te beplan, wanneer hulle lineêre vergelykings onderrig. As leerders eers die skuif van rekenkundige metodes na algebrarese metodes gemaak het, kan hulle besef dat hul primitiewe metodes nie altyd effektief is nie. Die navorsingstrategie wat in hierdie studie aangewend is, is kwalitatief en kwantitatief Twee-en-veertig Graad 8 leerders is gekies om verskillende tipes lineêre vergelykings individueel op te los. Hul antwoorde is daarna geïnterpreteer, geëvalueer en geanaliseer. Daarna is veertien leerders uit hierdie groep gekies en semigestruktureerde onderhoude is met hulle gevoer. Vanuit die onderhoude kon 'n dieper studie van die leerders se informele metodes van oplossing gemaak word. Die gevolgtrekking wat in hierdie studie gemaak word, is dat daar wel 'n kognitiewe gaping bestaan in die konteks van die studie. Leerders moet 'n paradigmaskuif maak wanneer hulle van rekenkundige metodes na algebraïese metodes beweeg. Hierdie klemverskuiwing vereis deeglike kurrikulumbeplanning.
Altassan, Alaa Abdullah. "Linear equations over free Lie algebras". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/linear-equations-over-free-liealgebras(6e29b286-1869-4207-b054-8baab98e70df).html.
Texto completoChen, Hua, Wei-Xi Li y Chao-Jiang Xu. "Gevrey hypoellipticity for linear and non-linear Fokker-Planck equations". Universität Potsdam, 2007. http://opus.kobv.de/ubp/volltexte/2009/3028/.
Texto completoHafez, Salah Taha. "Continued fractions and solutions of linear and non-linear lattice equations". Thesis, University of Kent, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.236725.
Texto completoTorshage, Axel. "Linear Functional Equations and Convergence of Iterates". Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-56450.
Texto completoGrey, David John. "Parallel solution of power system linear equations". Thesis, Durham University, 1995. http://etheses.dur.ac.uk/5429/.
Texto completoSerna, Rodrigo. "Solving Linear Systems of Equations in Hardware". Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-200610.
Texto completoLibros sobre el tema "Linear equations"
Kanwal, Ram P. Linear Integral Equations. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6012-1.
Texto completoKress, Rainer. Linear Integral Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-97146-4.
Texto completoKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0559-3.
Texto completoKanwal, Ram P. Linear Integral Equations. Boston, MA: Birkhäuser Boston, 1997. http://dx.doi.org/10.1007/978-1-4612-0765-8.
Texto completoKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-9593-2.
Texto completoLinear integral equations. 2a ed. Boston: Birkhäuser, 1997.
Buscar texto completoLovitt, William Vernon. Linear integral equations. Mineola, N.Y: Dover Publications, 2005.
Buscar texto completoKress, Rainer. Linear Integral Equations. New York, NY: Springer New York, 1999.
Buscar texto completoKress, Rainer. Linear Integral Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Buscar texto completoWoodford, Chris. Solving linear and non-linear equations. New York: Ellis Horwood, 1992.
Buscar texto completoCapítulos de libros sobre el tema "Linear equations"
Afriat, S. N. "Linear Equations". En Linear Dependence, 67–88. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4273-5_7.
Texto completoMiyake, Toshitsune. "Linear Equations". En Linear Algebra, 33–59. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6994-1_2.
Texto completoMüller, P. C. y W. O. Schiehlen. "Matrix equations". En Linear vibrations, 296–306. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5047-4_13.
Texto completoStroud, K. A. y Dexter Booth. "Linear equations and simultaneous linear equations". En Foundation Mathematics, 184–202. London: Macmillan Education UK, 2009. http://dx.doi.org/10.1057/978-0-230-36672-5_5.
Texto completoKinzel, Wolfgang y Georg Reents. "Linear Equations". En Physics by Computer, 47–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-46839-1_3.
Texto completoHolden, K. y A. W. Pearson. "Linear Equations". En Introductory Mathematics for Economics and Business, 1–42. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22357-2_1.
Texto completoWoodford, C. y C. Phillips. "Linear Equations". En Numerical Methods with Worked Examples: Matlab Edition, 17–45. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-1366-6_2.
Texto completoRedfern, Darren y Colin Campbell. "Linear Equations". En The Matlab® 5 Handbook, 21–41. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-2170-8_3.
Texto completoRao, A. Ramachandra y P. Bhimasankaram. "Linear equations". En Texts and Readings in Mathematics, 185–217. Gurgaon: Hindustan Book Agency, 2000. http://dx.doi.org/10.1007/978-93-86279-01-9_6.
Texto completoVerhulst, Ferdinand. "Linear Equations". En Universitext, 69–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61453-8_6.
Texto completoActas de conferencias sobre el tema "Linear equations"
Bronstein, Manuel. "Linear ordinary differential equations". En Papers from the international symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/143242.143264.
Texto completoZadrzyńska, Ewa y Wojciech M. Zajączkowski. "Some linear parabolic system in Besov spaces". En Parabolic and Navier–Stokes equations. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-36.
Texto completoFREDET, A. "ALGORITHMS AROUND LINEAR DIFFERENTIAL EQUATIONS". En Proceedings of the International Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812770752_0018.
Texto completoBerkenbosch, Maint. "Moduli spaces for linear differential equations". En The Conference on Differential Equations and the Stokes Phenomenon. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776549_0002.
Texto completoMIGUEL, JOSÉ J., ANDREI SHINDIAPIN y ARCADY PONOSOV. "STABILITY AND LINEAR CHAIN TRICK". En Proceedings of the International Conference on Differential Equations. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812702067_0194.
Texto completoGuihong Wang, Haiyan Liu y Xiangfeng Liu. "The application of excel in solving linear equations and nonlinear equation". En 2011 International Conference on Computer Science and Service System (CSSS). IEEE, 2011. http://dx.doi.org/10.1109/csss.2011.5974400.
Texto completoČermák, Jan A. N. "The Schröder equation and asymptotic properties of linear delay differential equations". En The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.6.
Texto completoChochiev, T. Z. "On non-linear equation, generalizing the equations of the Riccati class". En General question of world science. "Л-Журнал", 2018. http://dx.doi.org/10.18411/gq-31-03-2018-01.
Texto completoStevens, B. L. "Derivation of aircraft, linear state equations from implicit nonlinear equations". En 29th IEEE Conference on Decision and Control. IEEE, 1990. http://dx.doi.org/10.1109/cdc.1990.203642.
Texto completoLASSAS, MATTI. "INVERSE PROBLEMS FOR LINEAR AND NON-LINEAR HYPERBOLIC EQUATIONS". En International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0199.
Texto completoInformes sobre el tema "Linear equations"
Jain, Himanshu, Edmund M. Clarke y Orna Grumberg. Efficient Craig Interpolation for Linear Diophantine (Dis)Equations and Linear Modular Equations. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2008. http://dx.doi.org/10.21236/ada476801.
Texto completoCohen, Herbert E. The Instability of Linear Heterogeneous Lanchester Equations. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1991. http://dx.doi.org/10.21236/ada243519.
Texto completoNirenberg, Louis. Techniques in Linear and Nonlinear Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1987. http://dx.doi.org/10.21236/ada187109.
Texto completoRundell, William y Michael S. Pilant. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1992. http://dx.doi.org/10.21236/ada256012.
Texto completoPilant, Michael S. y William Rundell. Undetermined Coefficient Problems for Quasi-Linear Parabolic Equations. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1989. http://dx.doi.org/10.21236/ada218462.
Texto completoSubasi, Yigit. Quantum algorithms for linear systems of equations [Slides]. Office of Scientific and Technical Information (OSTI), diciembre de 2017. http://dx.doi.org/10.2172/1774402.
Texto completoMathia, Karl. Solutions of linear equations and a class of nonlinear equations using recurrent neural networks. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.1354.
Texto completoParzen, George. Linear Orbits Parameters for the Exact Equations of Motion. Office of Scientific and Technical Information (OSTI), febrero de 1994. http://dx.doi.org/10.2172/1119381.
Texto completoChen, Goong y Han-Kun Wang. Pointwise Stabilization for Coupled Quasilinear and Linear Wave Equations. Fort Belvoir, VA: Defense Technical Information Center, enero de 1988. http://dx.doi.org/10.21236/ada190031.
Texto completoHerzog, K. J., M. D. Morris y T. J. Mitchell. Bayesian approximation of solutions to linear ordinary differential equations. Office of Scientific and Technical Information (OSTI), noviembre de 1990. http://dx.doi.org/10.2172/6242347.
Texto completo