Tesis sobre el tema "Linear discriminant analysis"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Linear discriminant analysis".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Skinner, Evelina. "Linear Discriminant Analysis with Repeated Measurements". Thesis, Linköpings universitet, Matematisk statistik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162777.
Texto completoGaneshanandam, S. "Variable selection in two-group discriminant analysis using the linear discriminant function". Thesis, University of Reading, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.379265.
Texto completoKim, Jiae. "Nonlinear Generalizations of Linear Discriminant Analysis: the Geometry of the Common Variance Space and Kernel Discriminant Analysis". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1607019187556971.
Texto completoLi, Yongping. "Linear discriminant analysis and its application to face identification". Thesis, University of Surrey, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326513.
Texto completoCalderini, Matias. "Linear Discriminant Analysis and Noise Correlations in Neuronal Activity". Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39962.
Texto completoNguyen, Hoang-Huy [Verfasser]. "Multi-Step Linear Discriminant Analysis and Its Applications / Hoang Huy Nguyen". Greifswald : Universitätsbibliothek Greifswald, 2013. http://d-nb.info/1030246793/34.
Texto completoVan, Deventer Petrus Jacobus Uys. "Outliers, influential observations and robust estimation in non-linear regression analysis and discriminant analysis". Doctoral thesis, University of Cape Town, 1993. http://hdl.handle.net/11427/4363.
Texto completoDraper, John Daniel. "Simultaneous Adaptive Fractional Discriminant Analysis: Applications to the Face Recognition Problem". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1331096665.
Texto completoNAKAGAWA, Seiichi, Norihide KITAOKA y Makoto SAKAI. "Linear Discriminant Analysis Using a Generalized Mean of Class Covariances and Its Application to Speech Recognition". Institute of Electronics, Information and Communication Engineers, 2008. http://hdl.handle.net/2237/14967.
Texto completoHennon, Christopher C. "Investigating Probabilistic Forecasting of Tropical Cyclogenesis Over the North Atlantic Using Linear and Non-Linear Classifiers". The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1047237423.
Texto completoTekinay, Cagri. "Classification Of Remotely Sensed Data By Using 2d Local Discriminant Bases". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12610782/index.pdf.
Texto completoKhosla, Nitin y n/a. "Dimensionality Reduction Using Factor Analysis". Griffith University. School of Engineering, 2006. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20061010.151217.
Texto completoKhosla, Nitin. "Dimensionality Reduction Using Factor Analysis". Thesis, Griffith University, 2006. http://hdl.handle.net/10072/366058.
Texto completoThesis (Masters)
Master of Philosophy (MPhil)
School of Engineering
Full Text
Strong, Stephen. "Dimensionality Reduction for the Purposes of Automatic Pattern Classification". Thesis, Griffith University, 2013. http://hdl.handle.net/10072/367333.
Texto completoThesis (Masters)
Master of Philosophy (MPhil)
School of Microelectronic Engineering
Science, Environment, Engineering and Technology
Full Text
Azarmehr, Ramin. "Real-time Embedded Age and Gender Classification in Unconstrained Video". Thesis, Université d'Ottawa / University of Ottawa, 2015. http://hdl.handle.net/10393/32463.
Texto completoZaeri, Naser. "Computation and memory efficient face recognition using binarized eigenphases and component-based linear discriminant analysis for wide range applications". Thesis, University of Surrey, 2007. http://epubs.surrey.ac.uk/844078/.
Texto completoPadovani, Carlos Roberto [UNESP]. "Aplicativo computacional para obtenção de probabilidades a priori de classificação errônea em experimentos agronômicos". Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/101872.
Texto completoNas Ciências Agronômicas, encontram-se várias situações em que são observadas diversas variáveis respostas nas parcelas ou unidades experimentais. Nestas situações, um caso de interesse prático à experimentação agronômica é o que considera a construção de regiões de similaridade entre as parcelas para a discriminação entre os grupos experimentais e ou para a classificação de novas unidades experimentais em uma dessas regiões. Os métodos de classificação ou discriminação exigem, para sua utilização prática, uma quantidade considerável de retenção de informação da estrutura de variabilidade dos dados e, principalmente, alta fidedignidade e competência nas alocações de novos indivíduos nos grupos, mostradas nas distribuições corretas destes indivíduos. Existem vários procedimentos para medir o grau de decisão correta (acurácia) das informações fornecidas pelos métodos classificatórios. Praticamente, a totalidade deles utilizam a probabilidade de classificação errônea como o indicador de qualidade, sendo alguns destes freqüentistas (probabilidade estimada pela freqüência relativa de ocorrências - métodos não paramétricos) e outros baseados nas funções densidade de probabilidade das populações (métodos paramétricos). A principal diferença entre esses procedimentos é a conceituação dada ao cálculo da probabilidade de classificação errônea. Pretende-se, no presente estudo, apresentar alguns procedimentos para estimar estas probabilidades, desenvolver um software para a obtenção das estimativas considerando a distância generalizada de Mahalanobis como o procedimento relativo à da função densidade de probabilidade para populações com distribuição multinormal . Este software será de acesso livre e de fácil manuseio para pesquisadores de áreas aplicadas, completado com o manual do usuário e com um exemplo de aplicação envolvendo divergência genética de girassol.
In the Agronomical Sciences, mainly in studies involving biomass production and rational use of energy, there are several situations in which several variable answers in the parts or experimental units are observed. In these situations, a case of practical interest to the agronomical experimentation is that one which considers the construction of similarity regions among parts and or the classification of new experimental units. The classification methods demand, for their utilization, a considerable quantity for utilization of their information retention of data and, mostly, high fidelity and competence in the new individual allocations. There are several procedures to measure accuracy degree of the information supplied by the discrimination method. Practically all of them use the miss-classification probability (erroneous classification) like the quality indicator. The main difference among these evaluation methods is the characterization of the miss-classification probability. Therefore, the aim is to present some estimate procedures of the missclassification probabilities involving repetition frequency and distribution methods and to develop a software to obtain their estimate, which is accessible and easy handling for researchers of applied areas, complementing the study with user's manual and examples in the rational energy application and biomass energy.
Wilgenbus, Erich Feodor. "The file fragment classification problem : a combined neural network and linear programming discriminant model approach / Erich Feodor Wilgenbus". Thesis, North-West University, 2013. http://hdl.handle.net/10394/10215.
Texto completoMSc (Computer Science), North-West University, Potchefstroom Campus, 2013
Almeida, Larissa Medeiros de. "Avaliação da gravidade da malária utilizando técnicas de extração de características e redes neurais artificiais". Universidade Federal do Amazonas, 2015. http://tede.ufam.edu.br/handle/tede/4093.
Texto completoApproved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-16T15:05:39Z (GMT) No. of bitstreams: 1 Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5)
Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2015-06-16T15:07:25Z (GMT) No. of bitstreams: 1 Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5)
Made available in DSpace on 2015-06-16T15:07:25Z (GMT). No. of bitstreams: 1 Dissertação-Larissa M de Almeida.pdf: 5516102 bytes, checksum: e49d2bccd21168f811140c6accd54e8f (MD5) Previous issue date: 2015-04-17
Não Informada
About half the world's population lives in malaria risk areas. Moreover, given the globalization of travel, these diseases that were once considered exotic and mostly tropical are increasingly found in hospital emergency rooms around the world. And often when it comes to experience in tropical diseases, expert opinion most of the time is not available or not accessible in a timely manner. The task of an accurate and efficient diagnosis of malaria, essential in medical practice, can become complex. And the complexity of this process increases as patients have non-specific symptoms with a large amount of data and inaccurate information involved. In this approach, Uzoka and colleagues (2011a), from clinical information of 30 Nigerian patients with confirmed malaria, used the Analytic Hierarchy Process method (AHP) and Fuzzy methodology to conduct the evaluation of the severity of malaria. The results obtained were compared with the diagnosis of medical experts. This paper develops a new methodology to evaluate the severity of malaria and compare with the techniques used by Uzoka and colleagues (2011a). For this purpose the data set used is the same of that study. The technique used is the Artificial Neural Networks (ANN). Are evaluated three architectures with different numbers of neurons in the hidden layer, two training methodologies (leave-one-out and 10-fold cross-validation) and three stopping criteria, namely: the root mean square error, early stop and regularization. In the first phase, we use the full database. Subsequently, the feature extraction methods are used: in the second stage, the Principal Component Analysis (PCA) and in the third stage, the Linear Discriminant Analysis (LDA). The best result obtained in the three phases, it was with the full database, using the criterion of regularization associated with the leave-one-out method, of 83.3%. And the best result obtained in (Uzoka, Osuji and Obot, 2011) was with the fuzzy network which revealed 80% accuracy
Cerca de metade da população mundial vive em áreas de risco da malária. Além disso, dada a globalização das viagens, essas doenças que antes eram consideradas exóticas e principalmente tropicais são cada vez mais encontradas em salas de emergência de hospitais no mundo todo. E frequentemente quando se trata de experiência em doenças tropicais, a opinião de especialistas na maioria das vezes está indisponível ou não acessível em tempo hábil. A tarefa de chegar a um diagnóstico da malária preciso e eficaz, fundamental na prática médica, pode tornar-se complexa. E a complexidade desse processo aumenta à medida que os pacientes apresentam sintomas não específicos com uma grande quantidade de dados e informação imprecisa envolvida. Nesse sentido, Uzoka e colaboradores (2011a), a partir de informações clínicas de 30 pacientes nigerianos com diagnóstico confirmado de malária, utilizaram a metodologia Analytic Hierarchy Process (AHP) e metodologia Fuzzy para realizar a avaliação da gravidade da malária. Os resultados obtidos foram comparados com o diagnóstico de médicos especialistas. Esta dissertação desenvolve uma nova metodologia para avaliação da gravidade da malária e a compara com as técnicas utilizadas por Uzoka e colaboradores (2011a). Para tal o conjunto de dados utilizados é o mesmo do referido estudo. A técnica utilizada é a de Redes Neurais Artificiais (RNA). São avaliadas três arquiteturas com diferentes números de neurônios na camada escondida, duas metodologias de treinamento (leave-one-out e 10-fold cross-validation) e três critérios de parada, a saber: o erro médio quadrático, parada antecipada e regularização. Na primeira fase, é utilizado o banco de dados completo. Posteriormente, são utilizados os métodos de extração de características: na segunda fase, a Análise dos Componentes Principais (do inglês, Principal Component Analysis - PCA) e na terceira fase, a Análise Discriminante Linear (do inglês, Linear Discriminant Analysis – LDA). O melhor resultado obtido nas três fases, foi com o banco de dados completo, utilizando o critério de regularização, associado ao leave-one-out, de 83.3%. Já o melhor resultado obtido em (Uzoka, Osuji e Obot, 2011) foi com a rede fuzzy onde obteve 80% de acurácia.
Umunoza, Gasana Emelyne. "Misclassification Probabilities through Edgeworth-type Expansion for the Distribution of the Maximum Likelihood based Discriminant Function". Licentiate thesis, Linköpings universitet, Tillämpad matematik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-175873.
Texto completoShin, Hyejin. "Infinite dimensional discrimination and classification". Texas A&M University, 2003. http://hdl.handle.net/1969.1/5832.
Texto completoPadovani, Carlos Roberto Pereira 1975. "Aplicativo computacional para obtenção de probabilidades a priori de classificação errônea em experimentos agronômicos /". Botucatu : [s.n.], 2007. http://hdl.handle.net/11449/101872.
Texto completoBanca: Adriano Wagner Ballarin
Banca: Luís Fernando Nicolosi Bravin
Banca: Rui Vieira de Moraes
Banca: Sandra Fiorelli de Almeida P. Simeão
Resumo: Nas Ciências Agronômicas, encontram-se várias situações em que são observadas diversas variáveis respostas nas parcelas ou unidades experimentais. Nestas situações, um caso de interesse prático à experimentação agronômica é o que considera a construção de regiões de similaridade entre as parcelas para a discriminação entre os grupos experimentais e ou para a classificação de novas unidades experimentais em uma dessas regiões. Os métodos de classificação ou discriminação exigem, para sua utilização prática, uma quantidade considerável de retenção de informação da estrutura de variabilidade dos dados e, principalmente, alta fidedignidade e competência nas alocações de novos indivíduos nos grupos, mostradas nas distribuições corretas destes indivíduos. Existem vários procedimentos para medir o grau de decisão correta (acurácia) das informações fornecidas pelos métodos classificatórios. Praticamente, a totalidade deles utilizam a probabilidade de classificação errônea como o indicador de qualidade, sendo alguns destes freqüentistas (probabilidade estimada pela freqüência relativa de ocorrências - métodos não paramétricos) e outros baseados nas funções densidade de probabilidade das populações (métodos paramétricos). A principal diferença entre esses procedimentos é a conceituação dada ao cálculo da probabilidade de classificação errônea. Pretende-se, no presente estudo, apresentar alguns procedimentos para estimar estas probabilidades, desenvolver um software para a obtenção das estimativas considerando a distância generalizada de Mahalanobis como o procedimento relativo à da função densidade de probabilidade para populações com distribuição multinormal . Este software será de acesso livre e de fácil manuseio para pesquisadores de áreas aplicadas, completado com o manual do usuário e com um exemplo de aplicação envolvendo divergência genética de girassol.
Abstract: In the Agronomical Sciences, mainly in studies involving biomass production and rational use of energy, there are several situations in which several variable answers in the parts or experimental units are observed. In these situations, a case of practical interest to the agronomical experimentation is that one which considers the construction of similarity regions among parts and or the classification of new experimental units. The classification methods demand, for their utilization, a considerable quantity for utilization of their information retention of data and, mostly, high fidelity and competence in the new individual allocations. There are several procedures to measure accuracy degree of the information supplied by the discrimination method. Practically all of them use the miss-classification probability (erroneous classification) like the quality indicator. The main difference among these evaluation methods is the characterization of the miss-classification probability. Therefore, the aim is to present some estimate procedures of the missclassification probabilities involving repetition frequency and distribution methods and to develop a software to obtain their estimate, which is accessible and easy handling for researchers of applied areas, complementing the study with user's manual and examples in the rational energy application and biomass energy.
Doutor
Arpaci, Erdogan. "Analysis Of Sinusoidal And Helical Buckling Of Drill String In Horizontal Wells Using Finite Element Method". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/2/12611003/index.pdf.
Texto completo#8217
results and the experimental study in the literature.
Mauk, Rachel Grant. "Prediction of Intensity Change Subsequent to Concentric Eyewall Events". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1469037273.
Texto completoMilanez, Karla Danielle Tavares de Melo. "Classificação de óleos vegetais comestíveis usando imagens digitais e técnicas de reconhecimento de padrões". Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/7157.
Texto completoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work presents a simple and non-expensive based on digital image and pattern recognition techniques for the classification of edible vegetable oils with respect to the type (soybean, canola, sunflower and corn) and the conservation state (expired and non-expired period of validity). For this, images of the sample oils were obtained from a webcam, and then, they were decomposed into histograms containing the distribution of color levels allowed for a pixel. Three representations for the color of a pixel were used: red-green-blue (RGB), hue-saturation-intensity (HSI) and grayscale. Linear discriminant analysis (LDA) was employed in order to build classification models on the basis of a reduced subset of variables. For the purpose of variable selection, two techniques were utilized, namely the successive projections algorithm (SPA) and stepwise (SW) formulation. Models based on partial least squares-discriminant analysis and (PLS-DA) applied to full histograms (without variable selection) were also employed for the purpose of comparison. For the study evolving the classification with respect to oil type, LDA/SPA, LDA /SW and PLS-DA models achieved a correct classification rate (CCR) of 95%, 90% and 95%, respectively. For the identification of expired non-expired samples, LDA / SPA models were found to the best method for classifying sunflower, soybean and canola oils, achieving a TCC of 97%, 94% and 93%, respectively, while the model LDA/SW correctly classified 100% of corn oil samples. These results suggest that the proposed method is a promising alternative for inspection of authenticity and the conservation state of edible vegetable oils. As advantages, the method does not use reagents to carry out the analysis and laborious procedures for chemical characterization of the samples are not required
Este trabalho apresenta um método simples e de baixo custo, baseado na utilização de imagens digitais e técnicas de reconhecimento de padrões, para a classificação de óleos vegetais comestíveis com relação ao tipo (soja, canola, girassol e milho) e ao estado de conservação (prazo de validade expirado e não expirado). Para isso, imagens das amostras de óleos vegetais foram obtidas a partir de uma webcam e, em seguida, as mesmas foram decompostas em histogramas contendo as distribuições dos níveis de cores permitidos a um pixel. Três modelos para a cor de um pixel foram utilizados: vermelho-verde-azul (RGB), matiz-saturação-intensidade (HSI) e tons de cinza. A análise discriminante linear (LDA) foi utilizada para o desenvolvimento de modelos de classificação com base em um subconjunto reduzido de variáveis. Para fins de seleção de variáveis, duas técnicas foram utilizadas: o algoritmo das projeções sucessivas (SPA) e o stepwise (SW). Modelos baseados na análise discriminante por mínimos quadrados parciais (PLS-DA) aplicados aos histogramas completos (sem seleção de variáveis) também foram utilizados com o propósito de comparação. No estudo envolvendo a classificação com respeito ao tipo, modelos LDA/SPA, LDA/SW e PLS-DA atingiram uma taxa de classificação correta (TCC) de 95%, 90% e 95%, respectivamente. Na identificação de amostras expiradas e não expiradas, o modelo LDA/SPA foi considerado o melhor método para a classificação das amostras de óleos de girassol, soja e canola, atingindo uma TCC de 97%, 94% e 93%, respectivamente, enquanto que o modelo LDA/SW classificou corretamente 100% das amostras de milho. Estes resultados sugerem que o método proposto é uma alternativa promissora para a inspeção de autenticidade e estado de conservação de óleos vegetais comestíveis. Como vantagem, a metodologia não utiliza reagentes, a análise é rápida e procedimentos laboriosos para a caracterização química das amostras não são necessários
DUARTE, Daniel Duarte. "Classificação de lesões em mamografias por análise de componentes independentes, análise discriminante linear e máquina de vetor de suporte". Universidade Federal do Maranhão, 2008. http://tedebc.ufma.br:8080/jspui/handle/tede/1816.
Texto completoMade available in DSpace on 2017-08-14T18:15:08Z (GMT). No. of bitstreams: 1 DanielCosta.pdf: 1087754 bytes, checksum: ada5f863f42efd8298fff788c37bded3 (MD5) Previous issue date: 2008-02-25
Female breast cancer is the major cause of death in western countries. Efforts in Computer Vision have been made in order to add improve the diagnostic accuracy by radiologists. In this work, we present a methodology that uses independent component analysis (ICA) along with support vector machine (SVM) and linear discriminant analysis (LDA) to distinguish between mass or non-mass and benign or malign tissues from mammograms. As a result, it was found that: LDA reaches 90,11% of accuracy to discriminante between mass or non-mass and 95,38% to discriminate between benign or malignant tissues in DDSM database and in mini-MIAS database we obtained 85% to discriminate between mass or non-mass and 92% of accuracy to discriminate between benign or malignant tissues; SVM reaches 99,55% of accuracy to discriminate between mass or non-mass and the same percentage to discriminate between benign or malignat tissues in DDSM database whereas, and in MIAS database it was obtained 98% to discriminate between mass or non-mass and 100% to discriminate between benign or malignant tissues.
Câncer de mama feminino é o câncer que mais causa morte nos países ocidentais. Esforços em processamento de imagens foram feitos para melhorar a precisão dos diagnósticos por radiologistas. Neste trabalho, nós apresentamos uma metodologia que usa análise de componentes independentes (ICA) junto com análise discriminante linear (LDA) e máquina de vetor de suporte (SVM) para distinguir as imagens entre nódulos ou não-nódulos e os tecidos em benignos ou malignos. Como resultado, obteve-se com LDA 90,11% de acurácia na discriminação entre nódulo ou não-nódulo e 95,38% na discriminação de tecidos benignos ou malignos na base de dados DDSM. Na base de dados mini- MIAS, obteve-se 85% e 92% na discriminação entre nódulos ou não-nódulos e tecidos benignos ou malignos respectivamente. Com SVM, alcançou-se uma taxa de até 99,55% na discriminação de nódulos ou não-nódulos e a mesma porcentagem na discriminação entre tecidos benignos ou malignos na base de dados DDSM enquanto que na base de dados mini-MIAS, obteve-se 98% e até 100% na discriminação de nódulos ou não-nódulos e tecidos benignos ou malignos, respectivamente.
Åman, Agnes. "Predicting consultation durations in a digital primary care setting". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231921.
Texto completoSyftet med denna uppsats är att utvärdera olika verktyg för att prediktera längden på ett läkarbesök och därmed göra det möjligt att skapa en mer effektiv schemaläggning i primärvården och på så sätt minska väntetiden för patienterna. Även om inget faktiskt schemaläggningssystem har föreslagits i denna uppsats så har fyra maskininlärningsmodeller implementerats och jämförts. Syftet med detta var bland annat att se om det var möjligt att dra slutsatsen att någon av modellerna gav bättre resultat än de andra. Den indata som använts i denna studie har bestått dels av symptomdata insamlad från symptomformulär ifylld av patienten före ett videomöte med en digital vårdgivare. Denna data har kombinerats med läkarens genomsnittliga mötestid i hens tidigare genomförda möten. Utdatan har definierats som längden av ett videomöte samt den tid som läkaren har behövt för administrativt arbete före och efter själva mötet. Ett av målen med denna studie var att undersöka som sambandet mellan indata och utdata är linjärt eller icke-linjärt. Ett annat mål var att formulera problemet både som ett regressionsproblem och som ett klassifikationsproblem. Syftet med detta var att kunna jämföra och se vilken av problemformuleringarna som gav bäst resultat. De modeller som har implementerats i denna studie är linjär regression, linjär diskriminationsanalys (linear discriminant analysis) och neurala nätverk implementerade för både regression och klassifikation. Efter att ha genomfört ett statistiskt t-test och en två-vägs ANOVA-analys kunde slutsatsen dras att ingen av de fyra studerade modellerna presterade signifikant bättre än någon av de andra. Eftersom linjär regression är enklare och kräver mindre datorkapacitet än de andra modellerna så dras slutsatsen att linjär regression kan rekommenderas för framtida användning tills det har bevisats att någon annan modell ger bättre resultat. De begränsningar som har identifierats hos studien är bland annat att det bara var fyra modeller som implementerats samt att datan som använts har vissa brister. Framtida studier som inkluderar fler modeller och bättre data har därför föreslagits. Dessutom uppmuntras framtida studier där ett faktiskt schemaläggningssystem implementeras som använder den metodik som föreslås i denna studie.
Elnady, Maged Elsaid. "On-shaft vibration measurement using a MEMS accelerometer for faults diagnosis in rotating machines". Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/onshaft-vibration-measurement-using-a-mems-accelerometer-for-faults-diagnosis-in-rotating-machines(cf9b9848-972d-49ff-a6b0-97bef1ad0e93).html.
Texto completoŠvábek, Hynek. "Nalezení a rozpoznání dominantních rysů obličeje". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2010. http://www.nusl.cz/ntk/nusl-237180.
Texto completoSalmon, Elizabeth. "DEVELOPMENT OF AN EEG BRAIN-MACHINE INTERFACE TO AID IN RECOVERY OF MOTOR FUNCTION AFTER NEUROLOGICAL INJURY". UKnowledge, 2013. http://uknowledge.uky.edu/cbme_etds/8.
Texto completoGul, Ahmet Bahtiyar. "Holistic Face Recognition By Dimension Reduction". Master's thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/1056738/index.pdf.
Texto completohowever, even Subspace LDA and Bayesian PCA do not perform well under changes in illumination and aging although they perform better than PCA.
Gao, Hui. "Extracting key features for analysis and recognition in computer vision". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141770523.
Texto completoGooch, Steven R. "A METHOD FOR NON-INVASIVE, AUTOMATED BEHAVIOR CLASSIFICATION IN MICE, USING PIEZOELECTRIC PRESSURE SENSORS". UKnowledge, 2014. http://uknowledge.uky.edu/ece_etds/56.
Texto completoKim, Seongsu. "A BAYESIAN EVIDENCE DEFINING SEARCH". The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1429789001.
Texto completoVaizurs, Raja Sarath Chandra Prasad. "Atrial Fibrillation Signal Analysis". Scholar Commons, 2011. http://scholarcommons.usf.edu/etd/3386.
Texto completoRibeiro, Lucas de Almeida. "Algoritmo evolutivo multi-objetivo em tabelas para seleção de variáveis em classificação multivariada". Universidade Federal de Goiás, 2014. http://repositorio.bc.ufg.br/tede/handle/tede/4405.
Texto completoApproved for entry into archive by Luanna Matias (lua_matias@yahoo.com.br) on 2015-04-01T15:19:35Z (GMT) No. of bitstreams: 2 Dissertação - Lucas de Almeida Ribeiro - 2014.pdf: 6237054 bytes, checksum: 085446421b01a7e7b9174daf3da9b192 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Made available in DSpace on 2015-04-01T15:19:35Z (GMT). No. of bitstreams: 2 Dissertação - Lucas de Almeida Ribeiro - 2014.pdf: 6237054 bytes, checksum: 085446421b01a7e7b9174daf3da9b192 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-10-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
This work proposes the use of multi-objective evolutionary algorithm on tables (AEMT) for variable selection in classification problems, using linear discriminant analysis. The proposed algorithm aims to find minimal subsets of the original variables, robust classifiers that model without significant loss in classification ability. The results of the classifiers modeled by the solutions found by this algorithm are compared in this work to those found by mono-objective formulations (such as PLS, APS and own implementations of a Simple Genetic Algorithm) and multi-objective formulations (such as the simple genetic algorithm multi -objective - MULTI-GA - and the NSGA II). As a case study, the algorithm was applied in the selection of spectral variables for classification by linear discriminant analysis (LDA) of samples of biodiesel / diesel. The results showed that the evolutionary formulations are solutions with a smaller number of variables (on average) and a better error rate (average) and compared to the PLS APS. The formulation of the AEMT proposal with the fitness functions: medium risk classification, number of selected variables and number of correlated variables in the model, found solutions with a lower average errors found by the NSGA II and the MULTI-GA, and also a smaller number of variables compared to the multi-GA. Regarding the sensitivity to noise the solution found by AEMT was less sensitive than other formulations compared, showing that the AEMT is more robust classifiers. Finally shows the separation regions of classes, based on the dispersion of samples, depending on the selected one of the solutions AEMT, it is noted that it is possible to determine variables of regions split from the selected variables.
Este trabalho propõe o uso do algoritmo evolutivo multi-objetivo em tabelas (AEMT) para a seleção de variáveis em problemas de classificação, por meio de análise discriminante linear. O algoritmo proposto busca encontrar subconjuntos mínimos, das variáveis originais, que modelem classificadores robustos, sem perda significativa na capacidade de classificação. Os resultados dos classificadores modelados pelas soluções encontradas por este algoritmo são comparadas, neste trabalho, às encontradas por formulações mono-objetivo (como o PLS, o APS e implementações próprias de um Algoritmo Genético Simples) e formulações multi-objetivos (como algoritmo genético multi-objetivo simples - MULTI-GA - e o NSGA II). Como estudo de caso, o algoritmo foi aplicado na seleção de variáveis espectrais, para a classificação por análise discriminante linear (LDA - Linear Discriminant Analysis), de amostras de biodiesel/diesel. Os resultados obtidos mostraram que as formulações evolutivas encontram soluções com um menor número de variáveis (em média) e uma melhor taxa de erros (média) se comparadas ao PLS e o APS. A formulação do AEMT proposta com as funções de aptidão: risco médio de classificação, número de variáveis selecionadas e quantidade de variáveis correlacionadas presentes no modelo, encontrou soluções com uma média de erros inferior as encontradas pelo NSGA II e pelo MULTI-GA, e também uma menor quantidade de variáveis se comparado ao MULTI-GA. Em relação à sensibilidade a ruídos a solução encontrada pelo AEMT se mostrou menos sensível que as outras formulações comparadas, mostrando assim que o AEMT encontra classificadores mais robustos. Por fim, são apresentadas as regiões de separação das classes, com base na dispersão das amostras, em função das variáveis selecionadas por uma das soluções do AEMT, nota-se que é possível determinar regiões de separação a partir das variáveis selecionadas.
Zhang, Angang. "Some Advances in Classifying and Modeling Complex Data". Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/77958.
Texto completoPh. D.
Bayik, Tuba Makbule. "Automatic Target Recognition In Infrared Imagery". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/2/12605388/index.pdf.
Texto completoPacola, Edras Reily. "Uso da análise de discriminante linear em conjunto com a transformada wavelet discreta no reconhecimento de espículas". Universidade Tecnológica Federal do Paraná, 2015. http://repositorio.utfpr.edu.br/jspui/handle/1/1828.
Texto completoPesquisadores têm concentrado esforços, nos últimos 20 anos, aplicando a transformada wavelet no processamento, filtragem, reconhecimento de padrões e na classificação de sinais biomédicos, especificamente em sinais de eletroencefalografia (EEG) contendo eventos característicos da epilepsia, as espículas. Várias famílias de wavelets-mães foram utilizadas, mas sem um consenso sobre qual wavelet-mãe é a mais adequada para essa finalidade. Os sinais utilizados apresentam uma gama muito grande de eventos e não possuem características padronizadas. A literatura relata sinais de EEG amostrados entre 100 a 600 Hz, com espículas variando de 20 a 200 ms. Nesse estudo foram utilizadas 98 wavelets. Os sinais de EEG foram amostrados de 200 a 1 kHz. Um neurologista marcou um conjunto de 494 espículas e um conjunto de 1500 eventos não-espícula. Esse estudo inicia avaliando a quantidade de decomposições wavelets necessárias para a detecção de espículas, seguido pela análise detalhada do uso combinado de wavelets-mães de uma mesma família e entre famílias. Na sequência é analisada a influência de descritores e o uso combinado na detecção de espículas. A análise dos resultados desses estudos indica que é mais adequado utilizar um conjunto de wavelets-mães, com vários níveis de decomposição e com vários descritores, ao invés de utilizar uma única wavelet-mãe ou um descritor específico para a detecção de espículas. A seleção desse conjunto de wavelets, de níveis de decomposição e de descritores permite obter níveis de detecção elevados conforme a carga computacional que se deseje ou a plataforma computacional disponível para a implementação. Como resultado, esse estudo atingiu níveis de desempenho entre 0,9936 a 0,9999, dependendo da carga computacional. Outras contribuições desse estudo referem-se à análise dos métodos de extensão de borda na detecção de espículas; e a análise da taxa de amostragem de sinais de EEG no desempenho do classificador de espículas, ambos com resultados significativos. São também apresentadas como contribuições: uma nova arquitetura de detecção de espículas, fazendo uso da análise de discriminante linear; e a apresentação de um novo descritor, energia centrada, baseado na resposta dos coeficientes das sub-bandas de decomposição da transformada wavelet, capaz de melhorar a discriminação de eventos espícula e não-espícula.
Researchers have concentrated efforts in the past 20 years, by applying the wavelet transform in processing, filtering, pattern recognition and classification of biomedical signals, in particular signals of electroencephalogram (EEG) containing events characteristic of epilepsy, the spike. Several families of mother-wavelets were used, but there are no consensus about which mother-wavelet is the most adequate for this purpose. The signals used have a wide range of events. The literature reports EEG signals sampled from 100 to 600 Hz with spikes ranging from 20 to 200 ms. In this study we used 98 wavelets. The EEG signals were sampled from 200 Hz up to 1 kHz. A neurologist has scored a set of 494 spikes and a set 1500 non-spike events. This study starts evaluating the amount of wavelet decompositions required for the detection of spikes, followed by detailed analysis of the combined use of mother-wavelets of the same family and among families. Following is analyzed the influence of descriptors and the combined use of them in spike detection. The results of these studies indicate that it is more appropriate to use a set of mother-wavelets, with many levels of decomposition and with various descriptors, instead of using a single mother-wavelet or a specific descriptor for the detection of spikes. The selection of this set of wavelets, decomposition level and descriptors allows to obtain high levels of detection according to the computational load desired or computing platform available for implementation. This study reached performance levels between 0.9936 to 0.9999, depending on the computational load. Other contributions of this study refer to the analysis of the border extension methods for spike detection; and the influences of the EEG signal sampling rate in the classifier performance, each one with significant results. Also shown are: a new spike detection architecture by making use of linear discriminant analysis; and the presentation of a new descriptor, the centred energy, based on the response of the coefficients of decomposition levels of the wavelet transform, able to improve the discrimination of spike and non-spike events.
Kartheek, arun sai ram chilla y Chelluboina Kavya. "Investigating Metrics that are Good Predictors of Human Oracle Costs An Experiment". Thesis, Blekinge Tekniska Högskola, Institutionen för programvaruteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-14080.
Texto completoFeng, Qianli. "Automatic American Sign Language Imitation Evaluator". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1461233570.
Texto completoEinestam, Ragnar y Karl Casserfelt. "PiEye in the Wild: Exploring Eye Contact Detection for Small Inexpensive Hardware". Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20696.
Texto completoEye contact detection sensors have the possibility of inferring user attention, which can beutilized by a system in a multitude of different ways, including supporting human-computerinteraction and measuring human attention patterns. In this thesis we attempt to builda versatile eye contact sensor using a Raspberry Pi that is suited for real world practicalusage. In order to ensure practicality, we constructed a set of criteria for the system basedon previous implementations. To meet these criteria, we opted to use an appearance-basedmachine learning method where we train a classifier with training images in order to inferif users look at the camera or not. Our aim was to investigate how well we could detecteye contacts on the Raspberry Pi in terms of accuracy, speed and range. After extensivetesting on combinations of four different feature extraction methods, we found that LinearDiscriminant Analysis compression of pixel data provided the best overall accuracy, butPrincipal Component Analysis compression performed the best when tested on imagesfrom the same dataset as the training data. When investigating the speed of the system,we found that down-scaling input images had a huge effect on the speed, but also loweredthe accuracy and range. While we managed to mitigate the effects the scale had on theaccuracy, the range of the system is still relative to the scale of input images and byextension speed.
Onder, Murat. "Face Detection And Active Robot Vision". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/2/12605290/index.pdf.
Texto completoWang, Xuechuan y n/a. "Feature Extraction and Dimensionality Reduction in Pattern Recognition and Their Application in Speech Recognition". Griffith University. School of Microelectronic Engineering, 2003. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20030619.162803.
Texto completoWang, Xuechuan. "Feature Extraction and Dimensionality Reduction in Pattern Recognition and Their Application in Speech Recognition". Thesis, Griffith University, 2003. http://hdl.handle.net/10072/365680.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Microelectronic Engineering
Full Text
Sanchez, Merchante Luis Francisco. "Learning algorithms for sparse classification". Phd thesis, Université de Technologie de Compiègne, 2013. http://tel.archives-ouvertes.fr/tel-00868847.
Texto completoJanbain, Ali. "Utilisation d'algorithmes génétiques pour l'identification systématique de réseaux de gènes co-régulés". Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT019/document.
Texto completoThe aim of this work is to develop a new automatic approach to identify networks of genes involved in the same biological function. This allows a better understanding of the biological phenomena and in particular of the processes involved in diseases such as cancers. Various strategies have been developed to try to cluster genes of an organism according to their functional relationships : classical genetics and molecular genetics. Here we use a well-known property of functionally related genes mainly that these genes are generally co-regulated and therefore co-expressed. This co-regulation can be detected by microarray meta-analyzes databases such as Gemma or COXPRESdb. In a previous work [Al Adhami et al., 2015], the topology of a gene coexpression network was characterized using two description parameters of networks that discriminate randomly selected groups of genes (random modules, RM) from groups of genes with known functional relationship (functional modules, FM), e.g. genes that belong to the same GO Biological Process. We first tested different topological descriptors of the co-expression network to select those that best identify functional modules. Then, we built a database of functional and random modules for which, based on the selected descriptors, we constructed a discrimination model (LDA)[Friedman et al., 2001] allowing, for a given subset of genes, predict its type (functional or not). Based on the similarity method of genes worked by Wang and co-workers [Wang et al., 2007], we calculated a functional similarity score between the genes of a module. We combined this score with that of the LDA model in a fitness function implemented in a genetic algorithm (GA). Starting from a given Gene Ontology Biological Process (GO-BP), AG aimed to eliminate genes that were weakly coexpressed with the largest clique of the GO-BP and to add genes that "improved" the topology and functionality of the module. We tested TopoFunc on the 193 murine GO-BPs comprising 50-100 genes and showed that TopoFunc aggregated a number of novel genes to the initial GO-BP while improving module topology and functional similarity. These studies can be conducted on several species (humans, mice, rats, and possibly chicken and zebrafish) to identify functional modules preserved during evolution
Macenauer, Oto. "Identifikace obličeje". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2010. http://www.nusl.cz/ntk/nusl-237221.
Texto completoZhong, Xiao. "A study of several statistical methods for classification with application to microbial source tracking". Link to electronic thesis, 2004. http://www.wpi.edu/Pubs/ETD/Available/etd-0430104-155106/.
Texto completoKeywords: classification; k-nearest-neighbor (k-n-n); neural networks; linear discriminant analysis (LDA); support vector machines; microbial source tracking (MST); quadratic discriminant analysis (QDA); logistic regression. Includes bibliographical references (p. 59-61).
Novotný, Ondřej. "Adaptace systémů pro rozpoznání mluvčího". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2014. http://www.nusl.cz/ntk/nusl-236084.
Texto completo