Artículos de revistas sobre el tema "Linear block codes"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Linear block codes.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Linear block codes".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Litwin, L. y K. Ramaswamy. "Linear block codes". IEEE Potentials 20, n.º 1 (2001): 29–31. http://dx.doi.org/10.1109/45.913209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Feng, Keqin, Lanju Xu y Fred J. Hickernell. "Linear error-block codes". Finite Fields and Their Applications 12, n.º 4 (noviembre de 2006): 638–52. http://dx.doi.org/10.1016/j.ffa.2005.03.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Dubey, Pankaj, Neelesh Gupta y Meha Shrivastva. "Non Coherent Block Coded Modulation using Linear Components Codes". International Journal of Computer Applications 91, n.º 13 (18 de abril de 2014): 5–8. http://dx.doi.org/10.5120/15939-5097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tolhuizen, L. "New binary linear block codes (Corresp.)". IEEE Transactions on Information Theory 33, n.º 5 (septiembre de 1987): 727–29. http://dx.doi.org/10.1109/tit.1987.1057346.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Caire, G. y E. Biglieri. "Linear block codes over cyclic groups". IEEE Transactions on Information Theory 41, n.º 5 (1995): 1246–56. http://dx.doi.org/10.1109/18.412673.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sklar, B. y F. J. Harris. "The ABCs of linear block codes". IEEE Signal Processing Magazine 21, n.º 4 (julio de 2004): 14–35. http://dx.doi.org/10.1109/msp.2004.1311137.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Tang, Li y Aditya Ramamoorthy. "Coded Caching Schemes With Reduced Subpacketization From Linear Block Codes". IEEE Transactions on Information Theory 64, n.º 4 (abril de 2018): 3099–120. http://dx.doi.org/10.1109/tit.2018.2800059.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wei, Ruey-Yi, Tzu-Shiang Lin y Shi-Shan Gu. "Noncoherent Block-Coded TAPSK and 16QAM Using Linear Component Codes". IEEE Transactions on Communications 58, n.º 9 (septiembre de 2010): 2493–98. http://dx.doi.org/10.1109/tcomm.2010.09.090413.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Sole, Patrick y Virgilio Sison. "Quaternary Convolutional Codes From Linear Block Codes Over Galois Rings". IEEE Transactions on Information Theory 53, n.º 6 (junio de 2007): 2267–70. http://dx.doi.org/10.1109/tit.2007.896884.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Micheli, Giacomo y Alessandro Neri. "New Lower Bounds for Permutation Codes Using Linear Block Codes". IEEE Transactions on Information Theory 66, n.º 7 (julio de 2020): 4019–25. http://dx.doi.org/10.1109/tit.2019.2957354.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Niharmine, Lahcen, Hicham Bouzkraoui, Ahmed Azouaoui y Youssef Hadi. "Simulated Annealing Decoder for Linear Block Codes". Journal of Computer Science 14, n.º 8 (1 de agosto de 2018): 1174–89. http://dx.doi.org/10.3844/jcssp.2018.1174.1189.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Agrell, E. "Voronoi regions for binary linear block codes". IEEE Transactions on Information Theory 42, n.º 1 (1996): 310–16. http://dx.doi.org/10.1109/18.481810.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Said, A. y R. Palazzo. "New ternary and quaternary linear block codes". IEEE Transactions on Information Theory 42, n.º 5 (1996): 1625–28. http://dx.doi.org/10.1109/18.532912.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Kiely, A. B., S. J. Dolinar, R. J. McEliece, L. L. Ekroot y Wei Lin. "Trellis decoding complexity of linear block codes". IEEE Transactions on Information Theory 42, n.º 6 (1996): 1687–97. http://dx.doi.org/10.1109/18.556665.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Laendner, Stefan, Thorsten Hehn, Olgica Milenkovic y Johannes B. Huber. "The Trapping Redundancy of Linear Block Codes". IEEE Transactions on Information Theory 55, n.º 1 (enero de 2009): 53–63. http://dx.doi.org/10.1109/tit.2008.2008134.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Dumachev, V. N., A. N. Kopylov y V. V. Butov. "Neural Net Decoders for Linear Block Codes". Bulletin of the South Ural State University. Series "Mathematical Modelling, Programming and Computer Software" 12, n.º 1 (2019): 129–36. http://dx.doi.org/10.14529/mmp190111.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

WU, JA-LING, YUEN-HSIEN TSENG y YUH-MING HUANG. "NEURAL NETWORK DECODERS FOR LINEAR BLOCK CODES". International Journal of Computational Engineering Science 03, n.º 03 (septiembre de 2002): 235–55. http://dx.doi.org/10.1142/s1465876302000629.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Dong, Xue-dong, Cheong Boon Soh y Erry Gunawan. "Linear Block Codes for Four-Dimensional Signals". Finite Fields and Their Applications 5, n.º 1 (enero de 1999): 57–75. http://dx.doi.org/10.1006/ffta.1998.0235.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Khebbou, Driss, Reda Benkhouya, Idriss Chana y Hussain Ben-Azza. "SIMPLIFIED SUCCESSIVE-CANCELLATION LIST POLAR DECODING FOR BINARY LINEAR BLOCK CODES". Journal of Southwest Jiaotong University 56, n.º 6 (24 de diciembre de 2021): 616–26. http://dx.doi.org/10.35741/issn.0258-2724.56.6.54.

Texto completo
Resumen
This paper aims to take advantage of the performances of polar decoding techniques for the benefit of binary linear block codes (BLBCs) with the main objective is to study the performances of the SSCL decoding for short-length BLBCs. Polar codes are one of the most recent error-correcting codes to be invented, and they have been mathematically demonstrated to be able to correct all errors under a specific situation, using the successive-cancellation decoder. However, their performances for real-time wireless communications at short block lengths remain less attractive. To take advantage of the performance of these codes in favor of error correction codes of short block length, an adaptation of the simplified successive-cancellation list as a decoder for polar codes for the benefit of short block length binary linear block codes is presented in this paper. This adaptation makes it possible to take advantage of the performances of less complex decoding methods for polar codes for BLBCs with latency and complexity optimization of the standard successive-cancellation list decoder. The experiment shows that the method can achieve the performances of the most famous order statistic decoder for binary linear block codes, which can achieve the performances of maximum-likelihood decoding with computational complexity and memory constraints.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Khebbou, Driss, Idriss Chana y Hussain Ben-Azza. "Single parity check node adapted to polar codes with dynamic frozen bit equivalent to binary linear block codes". Indonesian Journal of Electrical Engineering and Computer Science 29, n.º 2 (1 de febrero de 2023): 816. http://dx.doi.org/10.11591/ijeecs.v29.i2.pp816-824.

Texto completo
Resumen
<span lang="EN-US">In the context of decoding binary linear block codes by polar code decoding techniques, we propose in this paper a new optimization of the serial nature of decoding the polar codes equivalent to binary linear block codes. In addition to the special nodes proposed by the simplified successive-cancellation list technique, we propose a new special node allowing to estimate in parallel the bits of its sub-code. The simulation is done in an additive white gaussian noise channel (AWGN) channel for several linear block codes, namely bose–chaudhuri–hocquenghem codes (BCH) codes, quadratic-residue (QR) codes, and linear block codes recently designed in the literature. The performance of the proposed technique offers the same performance in terms of frame error rate (FER) as the ordered statistics decoding (OSD) algorithm, which achieves that of maximum likelihood decoder (MLD), but with high memory requirements and computational complexity.</span>
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Yang, Kai, Xiaodong Wang y Jon Feldman. "A New Linear Programming Approach to Decoding Linear Block Codes". IEEE Transactions on Information Theory 54, n.º 3 (marzo de 2008): 1061–72. http://dx.doi.org/10.1109/tit.2007.915712.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Brown, Gavin y Alexander M. Kasprzyk. "Seven new champion linear codes". LMS Journal of Computation and Mathematics 16 (2013): 109–17. http://dx.doi.org/10.1112/s1461157013000041.

Texto completo
Resumen
AbstractWe exhibit seven linear codes exceeding the current best known minimum distance $d$ for their dimension $k$ and block length $n$. Each code is defined over ${ \mathbb{F} }_{8} $, and their invariants $[n, k, d] $ are given by $[49, 13, 27] $, $[49, 14, 26] $, $[49, 16, 24] $, $[49, 17, 23] $, $[49, 19, 21] $, $[49, 25, 16] $ and $[49, 26, 15] $. Our method includes an exhaustive search of all monomial evaluation codes generated by points in the $[0, 5] \times [0, 5] $ lattice square.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Berger, Y. y Y. Be'ery. "Soft trellis-based decoder for linear block codes". IEEE Transactions on Information Theory 40, n.º 3 (mayo de 1994): 764–73. http://dx.doi.org/10.1109/18.335888.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Kiely, A. B., J. T. Coffey y M. R. Bell. "Optimal information bit decoding of linear block codes". IEEE Transactions on Information Theory 41, n.º 1 (1995): 130–40. http://dx.doi.org/10.1109/18.370113.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

McEliece, R. J. "On the BCJR trellis for linear block codes". IEEE Transactions on Information Theory 42, n.º 4 (julio de 1996): 1072–92. http://dx.doi.org/10.1109/18.508834.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Fossorier, M. P. C., Shu Lin y J. Snyders. "Reliability-based syndrome decoding of linear block codes". IEEE Transactions on Information Theory 44, n.º 1 (1998): 388–98. http://dx.doi.org/10.1109/18.651070.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Dariti, Rabiî y El Mamoun Souidi. "New families of perfect linear error-block codes". International Journal of Information and Coding Theory 2, n.º 2/3 (2013): 84. http://dx.doi.org/10.1504/ijicot.2013.059702.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Honary, B. "Low-complexity trellis decoding of linear block codes". IEE Proceedings - Communications 142, n.º 4 (1995): 201. http://dx.doi.org/10.1049/ip-com:19952037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Manoukian, H. H. y B. Honary. "BCJR trellis construction for binary linear block codes". IEE Proceedings - Communications 144, n.º 6 (1997): 367. http://dx.doi.org/10.1049/ip-com:19971611.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Sweeney, P. y S. Wesemeyer. "Iterative soft-decision decoding of linear block codes". IEE Proceedings - Communications 147, n.º 3 (2000): 133. http://dx.doi.org/10.1049/ip-com:20000300.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Rocha Junior, V. C. y P. G. Farrell. "Algebraic Soft-Decision Techniques for Linear Block Codes". Journal of Communication and Information Systems 5, n.º 1 (30 de junio de 1990): 59–72. http://dx.doi.org/10.14209/jcis.1990.4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Esmaeili, M., A. Alampour y T. A. Gulliver. "Decoding Binary Linear Block Codes Using Local Search". IEEE Transactions on Communications 61, n.º 6 (junio de 2013): 2138–45. http://dx.doi.org/10.1109/tcomm.2013.041113.120057.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Ling, San y Ferruh Özbudak. "Constructions and bounds on linear error-block codes". Designs, Codes and Cryptography 45, n.º 3 (1 de septiembre de 2007): 297–316. http://dx.doi.org/10.1007/s10623-007-9119-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Song, Young Joon. "Hybrid Maximum Likelihood Decoding for Linear Block Codes". International Journal of Multimedia and Ubiquitous Engineering 9, n.º 10 (31 de octubre de 2014): 91–100. http://dx.doi.org/10.14257/ijmue.2014.9.10.09.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Altay, Gökmen y Osman N. Ucan. "Heuristic construction of high-rate linear block codes". AEU - International Journal of Electronics and Communications 60, n.º 9 (octubre de 2006): 663–66. http://dx.doi.org/10.1016/j.aeue.2005.12.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Wolf, J. K. y A. J. Viterbi. "On the weight distribution of linear block codes formed from convolutional codes". IEEE Transactions on Communications 44, n.º 9 (1996): 1049–51. http://dx.doi.org/10.1109/26.536907.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Lin, Chien-Ying, Yu-Chih Huang, Shin-Lin Shieh y Po-Ning Chen. "Transformation of Binary Linear Block Codes to Polar Codes With Dynamic Frozen". IEEE Open Journal of the Communications Society 1 (2020): 333–41. http://dx.doi.org/10.1109/ojcoms.2020.2979529.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Scholl, S., E. Leonardi y N. Wehn. "FPGA implementation of trellis decoders for linear block codes". Advances in Radio Science 12 (10 de noviembre de 2014): 61–67. http://dx.doi.org/10.5194/ars-12-61-2014.

Texto completo
Resumen
Abstract. Forward error correction based on trellises has been widely adopted for convolutional codes. Because of their efficiency, they have also gained a lot of interest from a theoretic and algorithm point of view for the decoding of block codes. In this paper we present for the first time hardware architectures and implementations for trellis decoding of block codes. A key feature is the use of a sophisticated permutation network, the Banyan network, to implement the time varying structure of the trellis. We have implemented the Viterbi and the max-log-MAP algorithm in different folded versions on a Xilinx Virtex 6 FPGA.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Aghaei, Amirhossein, Konstantinos Plataniotis y Subbarayan Pasupathy. "Widely linear MMSE receivers for linear dispersion space-time block-codes". IEEE Transactions on Wireless Communications 9, n.º 1 (enero de 2010): 8–13. http://dx.doi.org/10.1109/twc.2010.01.080897.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Башкиров, А. В., И. В. Свиридова, М. В. Хорошайлова y О. В. Свиридова. "STOCHASTIC DECODING OF LINEAR BLOCK CODES USING CHECK MATRIX". ВЕСТНИК ВОРОНЕЖСКОГО ГОСУДАРСТВЕННОГО ТЕХНИЧЕСКОГО УНИВЕРСИТЕТА, n.º 6 (10 de enero de 2021): 79–84. http://dx.doi.org/10.36622/vstu.2020.16.6.011.

Texto completo
Resumen
Для итеративного декодирования на графах используется новый альтернативный подход - это стохастическое декодирование. Возможность стохастического декодирования была недавно предложена для декодирования LDPC-кодов. Эта статья расширяет применение стохастического подхода для декодирования линейных блочных кодов с помощью проверочных матриц (PCM), таких как коды Боуза - Чоудхури - Хоквингема (BCH), коды Рида - Соломона (RS) и блочные турбокоды на основе компонентов кодов BCH. Показано, как стохастический подход способен генерировать информацию мягкого выхода для итеративного декодирования с мягким входом и мягким выходом Soft - Input Soft - Output (SISO). Описывается структура стохастических переменных узлов высокой степени, используемых в кодах с помощью проверочных матриц PCM. Результаты моделирования для кода BCH (128, 120), кода RS (31, 25) и RS (63, 55) и турбокода блока BCH (256, 121) и (1024, 676) демонстрируют эффективность декодирования при закрытии к итеративному декодеру SISO с реализацией с плавающей запятой. Эти результаты показывают производительность декодирования, близкую к адаптивному алгоритму распространения доверия и/или турбо-ориентированному адаптированному алгоритму распространения доверия Stochastic decoding capability has recently been proposed for decoding LDPC codes. This paper expands on the application of the stochastic approach to decoding linear block codes using parity check matrices (PCMs) such as Bose-Chowdhury-Hawkingham (BCH) codes, Reed-Solomon (RS) codes, and BCH component-based block turbo codes. We show how the stochastic approach is able to generate soft-output information for iterative decoding with soft-input and soft-output Soft-Input Soft-Output (SISO). We describe the structure of high degree stochastic node variables used in codes using PCM parity check matrices. Simulation results for BCH code (128, 120), RS code (31, 25) and RS (63, 55), and BCH block turbo code (256, 121) and (1024, 676) demonstrate the decoding efficiency on close to SISO iterative decoder with floating point implementation. These results show decoding performance close to the adaptive trust propagation algorithm and / or turbo-oriented adapted trust propagation algorithm
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Anu Kathuria. "On traceable results of linear error correcting codes and resolvable BIBDS". International Journal of Science and Research Archive 2, n.º 2 (30 de mayo de 2021): 274–79. http://dx.doi.org/10.30574/ijsra.2021.2.2.0408.

Texto completo
Resumen
In this paper we relate how Equidistant Constant Weight Codes and Different Combinatorial Structures like Resolvable Balanced Incomplete Block Designs (RBIBD) , Nested Balanced Incomplete Block Designs (NBIBD) and Linear Codes are related with each other and then show how these Combinatorial Structures can be used as 2-Traceable (TA) Code.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Dong, Xue Dong. "Linear Block Codes for Six-Dimensional Signals over Finite Fields". Applied Mechanics and Materials 385-386 (agosto de 2013): 1358–61. http://dx.doi.org/10.4028/www.scientific.net/amm.385-386.1358.

Texto completo
Resumen
t is known that the performance of a signal constellation used to transmit digital information over the additive white Gaussian noise channel can be improved by increasing the dimensionality of the signal set used for transmission. This paper derives an algorithm for constructing codes for six-dimensional signals over finite fields of the algebraic integer ring of the cyclotomic field modulo irreducible elements with the norm , where is a prime number and or .These linear codes can correct some types of errors and provide an algebraic approach in an area which is currently mainly dominated by nonalgebraic convolutional codes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Lucas, R., M. Bossert y M. Breitbach. "On iterative soft-decision decoding of linear binary block codes and product codes". IEEE Journal on Selected Areas in Communications 16, n.º 2 (1998): 276–96. http://dx.doi.org/10.1109/49.661116.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Ogasahara, Naonori, Manabu Kobayashi y Shigeichi Hirasawa. "The construction of periodically time-variant convolutional codes using binary linear block codes". Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 90, n.º 9 (2007): 31–40. http://dx.doi.org/10.1002/ecjc.20271.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

MUNTEANU, V., D. TARNICERIU y G. ZAHARIA. "Analysis of Linear Block Codes as Sources with Memory". Advances in Electrical and Computer Engineering 10, n.º 4 (2010): 77–80. http://dx.doi.org/10.4316/aece.2010.04012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Elengical, S. M., F. Takawira y H. Xu. "Reduced complexity maximum likelihood decoding of linear block codes". SAIEE Africa Research Journal 97, n.º 2 (junio de 2006): 136–39. http://dx.doi.org/10.23919/saiee.2006.9488001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Khmelkov, A. N. "Optimal Syndrome Decoding of Cyclic Linear Block-Structured Codes". Telecommunications and Radio Engineering 69, n.º 2 (2010): 169–79. http://dx.doi.org/10.1615/telecomradeng.v69.i2.80.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Drolet, G. "Improvement of iterative decoding algorithm for linear block codes". Electronics Letters 38, n.º 23 (2002): 1454. http://dx.doi.org/10.1049/el:20020981.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Berger, Y. y Y. Be'ery. "Bounds on the trellis size of linear block codes". IEEE Transactions on Information Theory 39, n.º 1 (1993): 203–9. http://dx.doi.org/10.1109/18.179359.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Kasami, T., T. Takata, T. Fujiwara y S. Lin. "On complexity of trellis structure of linear block codes". IEEE Transactions on Information Theory 39, n.º 3 (mayo de 1993): 1057–64. http://dx.doi.org/10.1109/18.256515.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía