Artículos de revistas sobre el tema "Light interference"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Light interference.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Light interference".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Zhi-Xin, Yao, Zhong Jian-Wei, Mao Bang-Ning y Pan Bai-Liang. "Interference nature of light". Chinese Physics B 17, n.º 2 (febrero de 2008): 578–84. http://dx.doi.org/10.1088/1674-1056/17/2/037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Charas, Seymour. "Interference and polarized light". Physics Teacher 26, n.º 9 (diciembre de 1988): 570. http://dx.doi.org/10.1119/1.2342627.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Belyaeva, A. I., V. I. Goncharenko, A. P. Silka y R. G. Yarovaya. "Multichannel interference light filters". Journal of Applied Spectroscopy 52, n.º 2 (febrero de 1990): 214–17. http://dx.doi.org/10.1007/bf00661437.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Shah, Samit, Subhashree Rangarajan y Simon H. Friedman. "Light-Activated RNA Interference". Angewandte Chemie International Edition 44, n.º 9 (18 de febrero de 2005): 1328–32. http://dx.doi.org/10.1002/anie.200461458.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Shah, Samit, Subhashree Rangarajan y Simon H. Friedman. "Light-Activated RNA Interference". Angewandte Chemie 117, n.º 9 (18 de febrero de 2005): 1352–56. http://dx.doi.org/10.1002/ange.200461458.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Liu, Wei y Yuri S. Kivshar. "Multipolar interference effects in nanophotonics". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, n.º 2090 (28 de marzo de 2017): 20160317. http://dx.doi.org/10.1098/rsta.2016.0317.

Texto completo
Resumen
Scattering of electromagnetic waves by an arbitrary nanoscale object can be characterized by a multipole decomposition of the electromagnetic field that allows one to describe the scattering intensity and radiation pattern through interferences of dominating multipole modes excited. In modern nanophotonics, both generation and interference of multipole modes start to play an indispensable role, and they enable nanoscale manipulation of light with many related applications. Here, we review the multipolar interference effects in metallic, metal–dielectric and dielectric nanostructures, and suggest a comprehensive view on many phenomena involving the interferences of electric, magnetic and toroidal multipoles, which drive a number of recently discussed effects in nanophotonics such as unidirectional scattering, effective optical antiferromagnetism, generalized Kerker scattering with controlled angular patterns, generalized Brewster angle, and non-radiating optical anapoles. We further discuss other types of possible multipolar interference effects not yet exploited in the literature and envisage the prospect of achieving more flexible and advanced nanoscale control of light relying on the concepts of multipolar interference through full phase and amplitude engineering. This article is part of the themed issue ‘New horizons for nanophotonics’.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Wang, Zhuo, Daniel L. Marks, Paul Scott Carney, Larry J. Millet, Martha U. Gillette, Agustin Mihi, Paul V. Braun, Zhen Shen, Supriya G. Prasanth y Gabriel Popescu. "Spatial light interference tomography (SLIT)". Optics Express 19, n.º 21 (27 de septiembre de 2011): 19907. http://dx.doi.org/10.1364/oe.19.019907.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wang, Zhuo, Larry Millet, Mustafa Mir, Huafeng Ding, Sakulsuk Unarunotai, John Rogers, Martha U. Gillette y Gabriel Popescu. "Spatial light interference microscopy (SLIM)". Optics Express 19, n.º 2 (7 de enero de 2011): 1016. http://dx.doi.org/10.1364/oe.19.001016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Schmitt, J. M., A. Knüttel y J. R. Knutson. "Interference of diffusive light waves". Journal of the Optical Society of America A 9, n.º 10 (1 de octubre de 1992): 1832. http://dx.doi.org/10.1364/josaa.9.001832.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Guzman-Sepulveda, J. R. y A. Dogariu. "Multimode interference dynamic light scattering". Optics Letters 43, n.º 17 (28 de agosto de 2018): 4232. http://dx.doi.org/10.1364/ol.43.004232.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

de Groot, Peter. "Stroboscopic white-light interference microscopy". Applied Optics 45, n.º 23 (10 de agosto de 2006): 5840. http://dx.doi.org/10.1364/ao.45.005840.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Nityananda, Rajaram. "The interference of polarised light". Resonance 18, n.º 4 (abril de 2013): 309–22. http://dx.doi.org/10.1007/s12045-013-0048-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Kurdgelaidze, D. F. y D. D. Kurdgelaidze. "Light interference in octonion formalism". Russian Physics Journal 39, n.º 8 (agosto de 1996): 750–56. http://dx.doi.org/10.1007/bf02437085.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

陈, 光冶. "Historical Misinterpretation of Light Interference". Applied Physics 04, n.º 12 (2014): 189–94. http://dx.doi.org/10.12677/app.2014.412023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Zheng Mingjie, 郑明杰 y 李志芳 Li Zhifang. "Spatial-Light Interference Microscope Technology Using Green-Light". Laser & Optoelectronics Progress 57, n.º 13 (2020): 131801. http://dx.doi.org/10.3788/lop57.131801.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Schulz, Erich B. y John A. Ham. "Light-emitting diode surgical light interference with pulse oximetry". British Journal of Anaesthesia 123, n.º 4 (octubre de 2019): e490-e491. http://dx.doi.org/10.1016/j.bja.2019.07.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Belinskii, Aleksandr V. y D. N. Klyshko. "Interference of light and Bell's theorem". Uspekhi Fizicheskih Nauk 163, n.º 8 (1993): 1. http://dx.doi.org/10.3367/ufnr.0163.199308a.0001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Belinskiĭ, A. V. y D. N. Klyshko. "Interference of light and Bell's theorem". Physics-Uspekhi 36, n.º 8 (31 de agosto de 1993): 653–93. http://dx.doi.org/10.1070/pu1993v036n08abeh002299.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Chu, Kaiqin, Zachary J. Smith, Sebastian Wachsmann-Hogiu y Stephen Lane. "Super-resolved spatial light interference microscopy". Journal of the Optical Society of America A 29, n.º 3 (22 de febrero de 2012): 344. http://dx.doi.org/10.1364/josaa.29.000344.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Hancu, Ion M., Alberto G. Curto, Marta Castro-López, Martin Kuttge y Niek F. van Hulst. "Multipolar Interference for Directed Light Emission". Nano Letters 14, n.º 1 (6 de diciembre de 2013): 166–71. http://dx.doi.org/10.1021/nl403681g.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Angelsky, Oleg V., Alexander P. Maksimyak, Peter P. Maksimyak y Steen G. Hanson. "Interference diagnostics of white-light vortices". Optics Express 13, n.º 20 (2005): 8179. http://dx.doi.org/10.1364/opex.13.008179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Scarcelli, G., A. Valencia y Y. Shih. "Two-photon interference with thermal light". Europhysics Letters (EPL) 68, n.º 5 (diciembre de 2004): 618–24. http://dx.doi.org/10.1209/epl/i2004-10280-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Patrick, Chris. "Turbulence induces interference in coherent light". Scilight 2020, n.º 50 (11 de diciembre de 2020): 501110. http://dx.doi.org/10.1063/10.0002953.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Vabre, Maxime, Sylvain Girard, Hervé Gilles, Burcu S. Frankland, Florent Porée, Philippe Leprince, Jean-Yves Chesnel, Raul O. Barrachina y François Frémont. "Periodic Variations in the Wavelength Distributions following Photon Interferences: Analogy with Electron Interferences". ISRN Spectroscopy 2012 (19 de febrero de 2012): 1–4. http://dx.doi.org/10.5402/2012/174952.

Texto completo
Resumen
A new interference phenomenon is reported, which has so far not been observed with either matter or light. In a nanometer-sized version of Feynman's famous two-slit “thought” experiment with single electrons, the width of a quasi-monochromatic line has been found to oscillate with the detection angle. Since this experiment resembles the original double-slit experiment by Young with light (1807), photon interferences were investigated in order to determine the wavelength distribution as a function of the position in the interference field. In addition to the well-known oscillating dependence of the intensity with a succession of dark and bright fringes, a periodic dependence with respect to the detection position has also been observed for the width of the wavelength distribution, revealing a larger analogy between electron and photon interferences.
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Turek-Etienne, Tammy C., Eliza C. Small, Sharon C. Soh, Tianpei A. Xin, Priti V. Gaitonde, Ellen B. Barrabee, Richard F. Hart y Robert W. Bryant. "Evaluation of Fluorescent Compound Interference in 4 Fluorescence Polarization Assays: 2 Kinases, 1 Protease, and 1 Phosphatase". Journal of Biomolecular Screening 8, n.º 2 (abril de 2003): 176–84. http://dx.doi.org/10.1177/1087057103252304.

Texto completo
Resumen
With the increasing use of fluorescence-based assays in high-throughput screening (HTS), the possibility of interference by fluorescent compounds needs to be considered. To investigate compound interference, a well-defined sample set of biologically active compounds, LOPAC™, was evaluated using 4 fluorescein-based fluorescence polarization (FP) assays. Two kinase assays, a protease assay, and a phosphatase assay were studied. Fluorescent compound interference and light scattering were observed in both mixture- and single-compound testing under certain circumstances. In the kinase assays, which used low levels (1-3 nM) of fluorophore, an increase in total fluorescence, an abnormal decrease in mP readings, and negative inhibition values were attributed to compound fluorescence. Light scattering was observed by an increase in total fluorescence and minimal reduction in mP, leading to false positives. The protease and phosphatase assays, which used a higher concentration of fluorophore (20-1200 nM) than the kinase assays, showed minimal interference from fluorescent compounds, demonstrating that an increase in the concentration of the fluorophore minimized potential fluorescent compound interference. The data also suggests that mixtures containing fluorescent compounds can result in either false negatives that can mask a potential “hit” or false positives, depending on the assay format. Cy™ dyes (e.g., Cy3B™ and Cy5™) excite and emit further into the red region than fluorescein and, when used in place of fluorescein in kinase 1, eliminate fluorescence interference and light scattering by LOPAC™ compounds. This work demonstrates that fluorescent compound and light scattering interferences can be overcome by increasing the fluorophore concentration in an assay or by using longer wavelength dyes. ( Journal of Biomolecular Screening 2003:176-184)
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Jing Weiguo, 荆卫国, 王红培 Wang Hongpei, 栾光琦 Luan Guangqi, 孙明昭 Sun Mingzhao, 田. 超. Tian Chao y 王佳笑 Wang Jiaxiao. "Performance of low-light-level imaging system under light interference". Infrared and Laser Engineering 48, n.º 10 (2019): 1014001. http://dx.doi.org/10.3788/irla201948.1014001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Forkel, Gilbert J. M., Adrian Krohn y Peter A. Hoeher. "Optical Interference Suppression Based on LCD-Filtering". Applied Sciences 9, n.º 15 (2 de agosto de 2019): 3134. http://dx.doi.org/10.3390/app9153134.

Texto completo
Resumen
Using light emitting diodes (LED) for the purpose of simultaneous communication and illumination is known as visible light communication (VLC). Interference by ambient light sources is among the most critical challenges. Owing to the wideband VLC spectrum, the efficiency of wavelength-dependent optical filtering is limited, especially in the presence of sunlight. Multi-user VLC causes additional interference, since LEDs are characterized by a wide viewing angle. Although algorithm-based interference suppression is a feasible method, receiver saturation and especially noise enhancement are two challenges that can only by addressed effectively by filtering in the optical domain prior to the photodetector. In this publication, we propose the use of a liquid-crystal display (LCD) as receiver-side filter unit. The main advantage of this technology is the possibility to focus the field-of-view of the receiver on a specific light source and thereby suppress interference. Interference by ambient light, modulated interference and multi-aperture interference are introduced and signal-to-interference ratio improvements are derived using experimental results for a given LCD characteristic. By deriving the bit error rate for MIMO communications, the potential of the proposed interference reduction method is demonstrated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Muthekar, V. V., A. G. Kharat, N. P. Dharmadhikari y C. S. Mahajan. "Empirical groundwater exploration using Light Interference Technique". Resourceedings 2, n.º 1 (25 de febrero de 2019): 87. http://dx.doi.org/10.21625/resourceedings.v2i1.454.

Texto completo
Resumen
In fast-growing cities, the dependence on groundwater has been increased for household requirements and irrigation with the onset of the Green Revolution. This depends on the intensive use of inputs such as groundwater to boost farm production and to take care of population requirements. Private groundwater extraction for farming and drinking as well has been facilitated by policymakers in developing countries. Under exhaustive extraction of groundwater, falling groundwater tables may demand to explore precise groundwater investigation techniques. An instrument developed based on Light Interference technique (LIT) viz. NaAvmeter was proposed in the present study to explore the groundwater in less expenses and with precise measurement. This study investigated successfully a possibility of borewell location using NaAvmeter for irrigation and drinking purpose. The use of NaAvmeter exhibits encouraging results for identifying exact borewell location.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Varga, P., G. Kiss y Vera Schiller. "Wide angle interference of coherently scattered light". Acta Physica Hungarica 72, n.º 2-4 (diciembre de 1992): 235–42. http://dx.doi.org/10.1007/bf03054167.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Sui, Guorong, Fan Liu, Haifei Guo y Zhi Chen. "Flexible broadband white light multimode interference coupler". Optics Express 29, n.º 19 (31 de agosto de 2021): 29730. http://dx.doi.org/10.1364/oe.433260.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Hong-Guo, Li, Zhang Ying-Tao, Cao De-Zhong, Xiong Jun y Wang Kai-Ge. "Third-order ghost interference with thermal light". Chinese Physics B 17, n.º 12 (diciembre de 2008): 4510–15. http://dx.doi.org/10.1088/1674-1056/17/12/030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Meadway, Alexander y Lawrence C. Sincich. "Light reflectivity and interference in cone photoreceptors". Biomedical Optics Express 10, n.º 12 (26 de noviembre de 2019): 6531. http://dx.doi.org/10.1364/boe.10.006531.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Rahimi, Saeid y Robert A. Baker. "Three-dimensional display of light interference patterns". American Journal of Physics 67, n.º 5 (mayo de 1999): 453–55. http://dx.doi.org/10.1119/1.19288.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Luo, Xiangang, DinPing Tsai, Min Gu y Minghui Hong. "Subwavelength interference of light on structured surfaces". Advances in Optics and Photonics 10, n.º 4 (13 de noviembre de 2018): 757. http://dx.doi.org/10.1364/aop.10.000757.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Peterson, I. "Interference of Light Scattered by Two Ions". Science News 143, n.º 18 (1 de mayo de 1993): 279. http://dx.doi.org/10.2307/3977090.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Mei, Dongbin, Bingying Cheng, Wei Hu, Zhaolin Li y Daozhong Zhang. "Three-dimensional ordered patterns by light interference". Optics Letters 20, n.º 5 (1 de marzo de 1995): 429. http://dx.doi.org/10.1364/ol.20.000429.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Sawicki, Charles A. "Easy and inexpensive demonstration of light interference". Physics Teacher 39, n.º 1 (enero de 2001): 16–19. http://dx.doi.org/10.1119/1.1343422.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Wenchong,, Li, Ma Chunhua, Jiang Hong, Wu Chengbai, Lu Zhiming, Wang Bangrui y Lin Bingqun. "Laser Fingerprint Detection Under Background Light Interference". Journal of Forensic Sciences 37, n.º 4 (1 de julio de 1992): 13294J. http://dx.doi.org/10.1520/jfs13294j.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Sinclair, Michael B., Maarten P. de Boer y Alex D. Corwin. "Long-working-distance incoherent-light interference microscope". Applied Optics 44, n.º 36 (20 de diciembre de 2005): 7714. http://dx.doi.org/10.1364/ao.44.007714.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Gao, Feng, De Li, Ru-Wen Peng, Qing Hu, Kuang Wei, Q. J. Wang, Y. Y. Zhu y Mu Wang. "Tunable interference of light behind subwavelength apertures". Applied Physics Letters 95, n.º 1 (6 de julio de 2009): 011104. http://dx.doi.org/10.1063/1.3167821.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Zhang, Er-Feng, Wei-Tao Liu y Ping-Xing Chen. "Lensless ghost interference with classical incoherent light". Optics Communications 351 (septiembre de 2015): 135–39. http://dx.doi.org/10.1016/j.optcom.2015.04.062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Eliseev, A. A. y O. V. Ravodina. "Design principles of tunable interference light filters". Russian Physics Journal 40, n.º 3 (marzo de 1997): 215–21. http://dx.doi.org/10.1007/bf02510818.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Tambasco, Jean-Luc, Giacomo Corrielli, Robert J. Chapman, Andrea Crespi, Oded Zilberberg, Roberto Osellame y Alberto Peruzzo. "Quantum interference of topological states of light". Science Advances 4, n.º 9 (septiembre de 2018): eaat3187. http://dx.doi.org/10.1126/sciadv.aat3187.

Texto completo
Resumen
Topological insulators are materials that have a gapped bulk energy spectrum but contain protected in-gap states appearing at their surface. These states exhibit remarkable properties such as unidirectional propagation and robustness to noise that offer an opportunity to improve the performance and scalability of quantum technologies. For quantum applications, it is essential that the topological states are indistinguishable. We report high-visibility quantum interference of single-photon topological states in an integrated photonic circuit. Two topological boundary states, initially at opposite edges of a coupled waveguide array, are brought into proximity, where they interfere and undergo a beamsplitter operation. We observe Hong-Ou-Mandel interference with 93.1 ± 2.8% visibility, a hallmark nonclassical effect that is at the heart of linear optics–based quantum computation. Our work shows that it is feasible to generate and control highly indistinguishable single-photon topological states, opening pathways to enhanced photonic quantum technology with topological properties, and to study quantum effects in topological materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Partanen, Henri, Bernhard J. Hoenders, Ari T. Friberg y Tero Setälä. "Young’s interference experiment with electromagnetic narrowband light". Journal of the Optical Society of America A 35, n.º 8 (19 de julio de 2018): 1379. http://dx.doi.org/10.1364/josaa.35.001379.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Kinoshita, Shuichi y Takashi Kushida. "Single-Photon Michelson's Interference ExperimentsUsing Pulsed Light". Journal of the Physical Society of Japan 60, n.º 9 (15 de septiembre de 1991): 2932–41. http://dx.doi.org/10.1143/jpsj.60.2932.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Planinsic, Gorazd y Josip Slisko. "Mechanical model aids understanding of light interference". Physics Education 40, n.º 2 (23 de febrero de 2005): 128–32. http://dx.doi.org/10.1088/0031-9120/40/2/f10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Ohara, T., K. Agatsuma, K. Kaiho, T. Onishi y Y. Iwasa. "Cryogenic microstrain measurement using laser light interference". Cryogenics 29, n.º 11 (noviembre de 1989): 1050–54. http://dx.doi.org/10.1016/0011-2275(89)90259-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Belinsky, A. V. y D. N. Klyshko. "Interference of classical and non-classical light". Physics Letters A 166, n.º 5-6 (junio de 1992): 303–7. http://dx.doi.org/10.1016/0375-9601(92)90713-v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Barta, Piotr, Jonas Birgerson, Shuwen Guo, Hans Arwin, William R. Salaneck y Malgorzata Zagórska. "Inherent interference-filter polymer light-emitting diodes". Advanced Materials 9, n.º 2 (febrero de 1997): 135–38. http://dx.doi.org/10.1002/adma.19970090208.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Wang, Xiao-Dong, Bo Chen y Zhan-Shan Wang. "Young's interference in light scattering by spheres". Optics and Lasers in Engineering 50, n.º 3 (marzo de 2012): 349–53. http://dx.doi.org/10.1016/j.optlaseng.2011.11.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía