Literatura académica sobre el tema "Light angular momentum"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Light angular momentum".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Light angular momentum"
Stewart *, A. M. "Angular momentum of light". Journal of Modern Optics 52, n.º 8 (20 de mayo de 2005): 1145–54. http://dx.doi.org/10.1080/09500340512331326832.
Texto completoFranke-Arnold, Sonja. "Optical angular momentum and atoms". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, n.º 2087 (28 de febrero de 2017): 20150435. http://dx.doi.org/10.1098/rsta.2015.0435.
Texto completoSchimmoller, Alex, Spencer Walker y Alexandra S. Landsman. "Photonic Angular Momentum in Intense Light–Matter Interactions". Photonics 11, n.º 9 (17 de septiembre de 2024): 871. http://dx.doi.org/10.3390/photonics11090871.
Texto completoMasalov, A. V. y V. G. Niziev. "Angular momentum of gaussian light beams". Bulletin of the Russian Academy of Sciences: Physics 80, n.º 7 (julio de 2016): 760–65. http://dx.doi.org/10.3103/s1062873816070170.
Texto completoNairat, Mazen. "Axial Angular Momentum of Bessel Light". Photonics Letters of Poland 10, n.º 1 (31 de marzo de 2018): 23. http://dx.doi.org/10.4302/plp.v10i1.787.
Texto completoRitsch-Marte, Monika. "Orbital angular momentum light in microscopy". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, n.º 2087 (28 de febrero de 2017): 20150437. http://dx.doi.org/10.1098/rsta.2015.0437.
Texto completoOrnigotti, Marco y Andrea Aiello. "Surface angular momentum of light beams". Optics Express 22, n.º 6 (13 de marzo de 2014): 6586. http://dx.doi.org/10.1364/oe.22.006586.
Texto completoHugrass, W. N. "Angular Momentum Balance on Light Reflection". Journal of Modern Optics 37, n.º 3 (marzo de 1990): 339–51. http://dx.doi.org/10.1080/09500349014550401.
Texto completoZhou, Hailong, Jianji Dong, Jian Wang, Shimao Li, Xinlun Cai, Siyuan Yu y Xinliang Zhang. "Orbital Angular Momentum Divider of Light". IEEE Photonics Journal 9, n.º 1 (febrero de 2017): 1–8. http://dx.doi.org/10.1109/jphot.2016.2645896.
Texto completoBallantine, Kyle E., John F. Donegan y Paul R. Eastham. "There are many ways to spin a photon: Half-quantization of a total optical angular momentum". Science Advances 2, n.º 4 (abril de 2016): e1501748. http://dx.doi.org/10.1126/sciadv.1501748.
Texto completoTesis sobre el tema "Light angular momentum"
Cameron, Robert P. "On the angular momentum of light". Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5849/.
Texto completoVannier, dos santos borges Carolina. "Bell inequalities with Orbital Angular Momentum of Light". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00767216.
Texto completoVannier, Dos Santos Borges Carolina. "Bell inequalities with Orbital Angular Momentum of Light". Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112225/document.
Texto completoWe shall present a theoretical description of paraxial beams, showing the propagation modes that arise from the solution of the paraxial equation in free space. We then discuss the angular momentum carried by light beams, with its decomposition in spin and orbital angular momentum and its quantization. We present the polarization and transverse modes of a beam as potential degrees of freedom to encode information. We define the Spin-Orbit modes and explain the experimental methods to produce such modes. We then apply the Spin-Orbit modes to perform a BB84 quantum key distribution protocol without a shared reference frame.We propose a Bell-like inequality criterion as a sufficient condition for the spin-orbit non-separability of a classical laser beam. We show that the notion of separable and non-separable spin-orbit modes in classical optics builds a useful analogy with entangled quantum states, allowing for the study of some of their important mathematical properties. We present a detailed quantum optical description of the experiment in which a comprehensive range of quantum states are considered.Following the study of Bell's inequalities we consider bipartite quantum systems characterized by a continuous angular variable θ. We show how to reveal non-locality on this type of system using inequalities similar to CHSH ones, originally derived for bipartite spin 1/2 like systems. Such inequalities involve correlated measurement of continuous angular functions and are equivalent to the continuous superposition of CHSH inequalities acting on two-dimensional subspaces of the infinite dimensional Hilbert space. As an example, we discuss in detail one application of our results, which consists in measuring orientation correlations on the transverse profile of entangled photons
Gotte, Jorge Bernhard. "Integral and fractional orbital angular momentum of light". Thesis, University of Strathclyde, 2006. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26372.
Texto completoNeo, Richard. "Measuring the Orbital Angular Momentum of Light for Astronomy". Thesis, The University of Sydney, 2017. http://hdl.handle.net/2123/17718.
Texto completoChang, Yuan-Pin. "Novel probes of angular momentum polarization". Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d3880edf-436a-415e-8a74-6b1c0fd26e65.
Texto completoMcLaren, Melanie. "Tailoring quantum entanglement of orbital angular momentum". Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95868.
Texto completoENGLISH ABSTRACT: High-dimensional quantum entanglement offers an increase in information capacity per photon; a highly desirable property for quantum information processes such as quantum communication, computation and teleportation. As the orbital angular momentum (OAM) modes of light span an infinite-dimensional Hilbert space, they have become frontrunners in achieving entanglement in higher dimensions. In light of this, we investigate the potential of OAM entanglement of photons by controlling the parameters in both the generation and measurement systems. We show the experimental procedures and apparatus involved in generating and measuring entangled photons in two-dimensions. We verify important quantum tests such as the Einstein, Podolsky and Rosen (EPR) paradox using OAM and angle correlations, as well as a violation of a Bell-type inequality. By performing a full state tomography, we characterise our quantum state and show we have a pure, highly entangled quantum state. We demonstrate that this method can be extended to higher dimensions. The experimental techniques used to generate and measure OAM entanglement place an upper bound on the number of accessible OAM modes. As such, we investigate new methods in which to increase the spiral bandwidth of our generated quantum state. We alter the shape of the pump beam in spontaneous parametric down-conversion and demonstrate an effect on both OAM and angle correlations. We also made changes to the measurement scheme by projecting the photon pairs into the Bessel-Gaussian (BG) basis and demonstrate entanglement in this basis. We show that this method allows the measured spiral bandwidth to be optimised by simply varying the continuous radial parameter of the BG modes. We demonstrate that BG modes can be entangled in higher dimensions compared with the commonly used helical modes by calculating and comparing the linear entropy and fidelity for both modes. We also show that quantum entanglement can be accurately simulated using classical light using back-projection, which allows the study of projective measurements and predicts the strength of the coincidence correlations in an entanglement experiment. Finally, we make use of each of the techniques to demonstrate the effect of a perturbation on OAM entanglement measured in the BG basis. We investigate the self-healing property of BG beams and show that the classical property is translated to the quantum regime. By calculating the concurrence, we see that measured entanglement recovers after encountering an obstruction.
AFRIKAANSE OPSOMMING: Hoë-dimensionele kwantumverstrengeldheid bied ’n toename in inligtingskapasiteit per foton. Hierdie is ’n hoogs wenslike eienskap vir kwantum inligting prosesse soos kwantum kommunikasie, berekening en teleportasie. Omdat die orbitale hoekmomentum (OAM) modusse van lig ’n oneindig dimensionele Hilbertruimte beslaan, het dit voorlopers geword in die verkryging van verstrengeling in hoër dimensies. In die lig hiervan, ondersoek ons die potensiaal van OAM verstrengeling van fotone deur die parameters in beide die generering en meting stelsels te beheer. Ons toon die eksperimentele prosedures en apparaat wat betrokke is by die generering en die meet van verstrengelde fotone in twee dimensies. Ons verifieer kwantumtoetse, soos die Einstein, Podolsky en Rosen (EPR) paradoks vir OAM en die hoekkorrelasies, sowel as ’n skending van ’n Bell-tipe ongelykheid. Deur middel van ’n volledige toestand tomografie, karakteriseer ons die kwantum toestand en wys ons dat dit ’n suiwer, hoogs verstrengel kwantum toestand is. Ons toon ook dat hierdie metode uitgebrei kan word na hoër dimensies. Die eksperimentele tegnieke wat tydens die generasie en meet van OAM verstrengeling gebruik is, plaas ’n bogrens op die aantal toeganklik OAM modusse. Dus ondersoek ons nuwe metodes om die spiraal bandwydte van ons gegenereerde kwantum toestand te verhoog. Ons verander die vorm van die pomp bundel in spontane parametriese af-omskakeling en demonstreer die uitwerking daarvan op beide OAM en die hoekkorrelasies. Ons het ook veranderinge aan die meting skema gemaak deur die foton pare op die Bessel-Gauss (BG) basis te projekteer. Ons wys dat hierdie metode die gemeetde spiraal bandwydte kan optimeer deur eenvoudig die kontinue radiale parameter van die BG modes te verander. Ons demonstreer dat BG modusse verstrengel kan word in hoër dimensies as die heliese modusse, wat algemeen gebruik word, deur berekeninge te maak en te vergelyk met lineêre entropie en vir beide modusse. Ons wys ook dat kwantumverstrengling akkuraat nageboots kan word, met behulp van die klassieke lig terug-projeksie, wat die studie van projeksie metings toelaat en voorspel die krag van die saamval korrelasies in ’n verstrengeling eksperiment. Ten slotte, gebruik ons elk van die tegnieke om die effek van ’n storing op OAM verstrengling wat in die BG basis gemeet is, te demonstreer. Ons ondersoek die self-genesingseienskap van BG bundels en wys dat die klassieke eienskap vertaal na die kwantum-gebied. Deur die berekening van die konkurrensie (concurrence), sien ons dat die gemeetde verstrengeling herstel word nadat ’n obstruksie ondervind is.
Gelbord, Todd Richard. "On the geometry and topology of the angular momentum of light". Thesis, Montana State University, 2010. http://etd.lib.montana.edu/etd/2010/gelbord/GelbordT0510.pdf.
Texto completoPadmabandu, Gamaralalage Gunasiri 1956. "Angular momentum of light and its mechanical effects on a birefringent medium". Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276914.
Texto completoAn, Fangzhao A. "Experimental Realization of Slowly Rotating Modes of Light". Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/hmc_theses/53.
Texto completoLibros sobre el tema "Light angular momentum"
Andrews, David L. y Mohamed Babiker, eds. The Angular Momentum of Light. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511795213.
Texto completoAndrews, David L. The angular momentum of light. Cambridge: Cambridge University Press, 2012.
Buscar texto completoAuzinsh, Marcis. Optical polarization of molecules. Cambridge: Cambridge University Press, 1995.
Buscar texto completoStough, H. Paul. Flight investigation of stall, spin, and recovery characteristics of a low-wing, single-engine, T-tail light airplane. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1985.
Buscar texto completoEvans, Myron W. The light magnet, coupling of electronic and nuclear angular momenta in optical NMR and ESR: Quantum theory. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1991.
Buscar texto completoSweeney, John Peter. Gamma-ray spectroscopy of the light rare earth nuclei 159Er, 160Er and 167Lu at high angula momenta. Manchester: University of Manchester, 1994.
Buscar texto completoL, Andrews David y Mohamed Babiker. Angular Momentum of Light. Cambridge University Press, 2012.
Buscar texto completoL, Andrews David y Mohamed Babiker. Angular Momentum of Light. Cambridge University Press, 2012.
Buscar texto completoL, Andrews David y Mohamed Babiker. Angular Momentum of Light. Cambridge University Press, 2012.
Buscar texto completoBekshaev, A., M. Soskin y M. Vasnetsov. Paraxial Light Beams with Angular Momentum. Nova Science Pub Inc, 2008.
Buscar texto completoCapítulos de libros sobre el tema "Light angular momentum"
Burkardt, Matthias. "Quark Orbital Angular Momentum". En Light Cone 2015, 15–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_4.
Texto completoBurkardt, Matthias. "GPDs and Orbital Angular Momentum". En Light Cone 2016, 21–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65732-5_4.
Texto completoDai, Yanan. "Plasmon Orbital Angular Momentum Generation". En Imaging Light with Photoelectrons on the Nano-Femto Scale, 79–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52836-2_6.
Texto completoLorcé, Cédric y Keh-Fei Liu. "Quark and Gluon Orbital Angular Momentum: Where Are We?" En Light Cone 2015, 9–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_3.
Texto completoAllen, Les y Miles Padgett. "The Orbital Angular Momentum of Light: An Introduction". En Twisted Photons, 1–12. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527635368.ch1.
Texto completoPisano, Silvia. "Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum". En Light Cone 2015, 353–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_55.
Texto completoBabiker, M., V. E. Lembessis y L. Allen. "Optical Molasses and the Orbital Angular Momentum of Light". En Coherence and Quantum Optics VII, 367–68. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_57.
Texto completoRamesh, K. y Vidya Pol. "The Study on Twisted Light Communication Using Orbital Angular Momentum". En Lecture Notes on Data Engineering and Communications Technologies, 453–61. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-15-1002-1_46.
Texto completoNiel, Fabien. "Orbital Angular Momentum of Light: A State of the Art". En Classical and Quantum Description of Plasma and Radiation in Strong Fields, 193–210. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73547-0_9.
Texto completoBoyd, Robert W. y Miles J. Padgett. "Quantum Mechanical Properties of Light Fields Carrying Orbital Angular Momentum". En Optics in Our Time, 435–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31903-2_17.
Texto completoActas de conferencias sobre el tema "Light angular momentum"
Rodríguez-Fajardo, Valeria, Thao P. Nguyen, Kiyan S. Hocek, Jacob M. Freedman y Enrique J. Galvez. "Einstein beams carrying orbital angular momentum". En Complex Light and Optical Forces XVII, editado por David L. Andrews, Enrique J. Galvez y Halina Rubinsztein-Dunlop. SPIE, 2023. http://dx.doi.org/10.1117/12.2651269.
Texto completoZhou, Hailong, Jianji Dong, Jian Wang, Xinlun Cai, Siyuan Yu y Xinliang Zhang. "Dividing orbital angular momentum of light". En 2016 15th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2016. http://dx.doi.org/10.1109/icocn.2016.7875871.
Texto completoBordovitsyn, Vladimir A. y Olga A. Konstantinov. "ANGULAR MOMENTUM RADIATION OF SPIN LIGHT". En Proceedings of the Fourteenth Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814329682_0095.
Texto completoAmbrosio, Antonio. "Light structuring through orbital angular momentum". En Quantum Sensing and Nano Electronics and Photonics XX, editado por Manijeh Razeghi, Giti A. Khodaparast y Miriam S. Vitiello. SPIE, 2024. http://dx.doi.org/10.1117/12.3012867.
Texto completoSuprano, Alessia, Ilaria Gianani, Taira Giordani, Nicolò Spagnolo, Katja Pinker-Domenig, Uwe Klemm, Dimitris Gorpas et al. "Characterization of the transmission of structured light in scattering media". En Polarized light and Optical Angular Momentum for biomedical diagnostics, editado por Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson y Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2583117.
Texto completoStilgoe, Alexander B., Naran Gillies y Halina Rubinsztein-Dunlop. "Vector beam shaping for transverse angular momentum transfer". En Complex Light and Optical Forces XVII, editado por David L. Andrews, Enrique J. Galvez y Halina Rubinsztein-Dunlop. SPIE, 2023. http://dx.doi.org/10.1117/12.2657224.
Texto completoWang, Daqian, Ji Qi, Baoru Huang, Elizabeth Noble, Danail Stoyanov, Jun Gao y Daniel S. Elson. "A polarization-based smoke removal method for surgical images". En Polarized light and Optical Angular Momentum for biomedical diagnostics, editado por Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson y Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2577250.
Texto completoJacques, Steven L., Ben Urban y Hrebesh M. Subhash. "Polarized light reflectance and the sub-diffuse regime during optical imaging of skin". En Polarized light and Optical Angular Momentum for biomedical diagnostics, editado por Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson y Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2578004.
Texto completoSchucht, Philippe, Hee Ryung Lee, Mohammed Hachem Mezouar, Ekkehard Hewer, Andreas Raabe, Michael Murek, Irena Zubak et al. "Wide-field imaging of brain white matter fiber tracts with Mueller polarimetry in backscattering configuration". En Polarized light and Optical Angular Momentum for biomedical diagnostics, editado por Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson y Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2577872.
Texto completoGermer, Thomas A. "Depolarization in diffusely scattering media". En Polarized light and Optical Angular Momentum for biomedical diagnostics, editado por Jessica C. Ramella-Roman, Hui Ma, I. Alex Vitkin, Daniel S. Elson y Tatiana Novikova. SPIE, 2021. http://dx.doi.org/10.1117/12.2577888.
Texto completoInformes sobre el tema "Light angular momentum"
Brodsky, Stanley J. Orbital Angular Momentum on the Light-Front and QCD Observables. Office of Scientific and Technical Information (OSTI), marzo de 2006. http://dx.doi.org/10.2172/877429.
Texto completoMahanta, Monisha K. Experimentation of Fiber-Optic Transmission of Light with Orbital Angular Momentum. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2006. http://dx.doi.org/10.21236/ada451409.
Texto completoBrodsky, S. J. Light-cone representation of the spin and orbital angular momentum of relativistic composite systems. Office of Scientific and Technical Information (OSTI), marzo de 2000. http://dx.doi.org/10.2172/753316.
Texto completo