Literatura académica sobre el tema "Life cycle emission (LCE)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Life cycle emission (LCE)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Life cycle emission (LCE)"
Li, Qiangnian, Tongze Han, Changlin Niu y Ping Liu. "Life Cycle Carbon Emission Analyzing of Rural Residential Energy Efficiency Retrofit-A Case Study of Gansu province". E3S Web of Conferences 329 (2021): 01063. http://dx.doi.org/10.1051/e3sconf/202132901063.
Texto completoKumar, Ashok, Pardeep Singh, Nishant Raj Kapoor, Chandan Swaroop Meena, Kshitij Jain, Kishor S. Kulkarni y Raffaello Cozzolino. "Ecological Footprint of Residential Buildings in Composite Climate of India—A Case Study". Sustainability 13, n.º 21 (28 de octubre de 2021): 11949. http://dx.doi.org/10.3390/su132111949.
Texto completoThaipradit, Pipat, Nantamol Limphitakphong, Premrudee Kanchanapiya, Thanapol Tantisattayakul y Orathai Chavalparit. "The Influence of Building Envelop Materials on its Life Cycle Performance: A Case Study of Educational Building in Thailand". Key Engineering Materials 780 (septiembre de 2018): 74–79. http://dx.doi.org/10.4028/www.scientific.net/kem.780.74.
Texto completoSantamaria, Belen Moreno, Fernando del Ama Gonzalo, Matthew Griffin, Benito Lauret Aguirregabiria y Juan A. Hernandez Ramos. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities". Energies 14, n.º 8 (14 de abril de 2021): 2195. http://dx.doi.org/10.3390/en14082195.
Texto completoMoazzen, Nazanin, Mustafa Erkan Karaguler y Touraj Ashrafian. "Assessment of the Life Cycle Energy Efficiency of a Primary School Building in Turkey". Applied Mechanics and Materials 887 (enero de 2019): 335–43. http://dx.doi.org/10.4028/www.scientific.net/amm.887.335.
Texto completoShoaib-ul-Hasan, Sayyed, Malvina Roci, Farazee M. A. Asif, Niloufar Salehi y Amir Rashid. "Analyzing Temporal Variability in Inventory Data for Life Cycle Assessment: Implications in the Context of Circular Economy". Sustainability 13, n.º 1 (2 de enero de 2021): 344. http://dx.doi.org/10.3390/su13010344.
Texto completoGrenz, Julian, Moritz Ostermann, Karoline Käsewieter, Felipe Cerdas, Thorsten Marten, Christoph Herrmann y Thomas Tröster. "Integrating Prospective LCA in the Development of Automotive Components". Sustainability 15, n.º 13 (25 de junio de 2023): 10041. http://dx.doi.org/10.3390/su151310041.
Texto completoTighnavard Balasbaneh, Ali, Abdul Kadir Bin Marsono y Emad Kasra Kermanshahi. "Balancing of life cycle carbon and cost appraisal on alternative wall and roof design verification for residential building". Construction Innovation 18, n.º 3 (9 de julio de 2018): 274–300. http://dx.doi.org/10.1108/ci-03-2017-0024.
Texto completoIslam, Hamidul, Muhammed Bhuiyan, Quddus Tushar, Satheeskumar Navaratnam y Guomin Zhang. "Effect of Star Rating Improvement of Residential Buildings on Life Cycle Environmental Impacts and Costs". Buildings 12, n.º 10 (4 de octubre de 2022): 1605. http://dx.doi.org/10.3390/buildings12101605.
Texto completoBetten, Thomas, Shivenes Shammugam y Roberta Graf. "Adjustment of the Life Cycle Inventory in Life Cycle Assessment for the Flexible Integration into Energy Systems Analysis". Energies 13, n.º 17 (27 de agosto de 2020): 4437. http://dx.doi.org/10.3390/en13174437.
Texto completoTesis sobre el tema "Life cycle emission (LCE)"
Andersson, Lucas y Tim Fjällström. "LCC och LCA-baserad jämförelse mellan batteridriven och bensindriven produkt". Thesis, Linnéuniversitetet, Institutionen för maskinteknik (MT), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-96203.
Texto completoMany countries are trying to reduce the usage of fossil fuels and instead they are trying to find renewable alternatives. A common way to do this is to go from gasoline engines to electric engines. The purpose of the study is to gain a greater understanding of the products costs and environmental impact during their usage. The study was conducted as a case study at Swepac, Ljungby. The study’s implementation follows parts from LCC, LCA, CELA and the breakeven method in order to achieve the purpose. The environmental impact is measured in carbon dioxide equivalents and a conversion factor is used to convert the emissions to a monetary value that can be used in calculations of costs. The result shows that breakeven between the machines arises after 6.9 years, however, the service life is only 5 years. Both environmental impact, operating and maintenance costs is lower for the electrical option, however, the big difference in purchase price makes it take a long time for a breakeven to occur.
Krbalová, Maria. "Posuzování vlivu na životní prostředí při konstrukci výrobních strojů z pohledu emise vybraných skleníkových plynů". Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-256573.
Texto completoUnsbo, Hanna. "Update of the LCA-software WAMPS : Proposing new emission factors and investigating the implications". Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302402.
Texto completoUnder de senaste decennierna har livscykelanalys (LCA) blivit ett vanligt tillvägagångssätt världen över vid analyser av potentiella miljöeffekter kopplade till avfallshanteringssystem. Dessa system är av komplex natur och inkluderar allt från teknologiska lösningar, miljöpåverkan samt flera intressenter. För att underlätta dessa studier används idag ofta olika LCA-modeller. WAMPS är ett program som är särskilt utvecklad för att bedöma både miljömässiga- och ekonomiska konsekvenser kopplat till avfallshanteringssystem. Under de senaste åren har arbetet med att uppdatera modellen påbörjat eftersom programvaran inte har uppdaterats sedan början av 2000-talet. Syftet med detta examensarbete är att föreslå nya emissionsfaktorer för återvinning och jungfrulig produktion av glas, aluminium, stål, och plast. Utöver detta avser studien att studera hur implementeringen av de nya siffrorna inverkar på resultatet som erhålls i WAMPS. För att uppfylla tesen av detta arbete samlades LCI data in för varje material och utvärderades enligt tre DQI:er (Temporal representativitet, geografisk representativitet och dokumentation). Nya utsläppsfaktorer utvecklades baserat på utvärderingen och genom diskussioner inom projektgruppen. Framförallt för att säkerhetsställa att alla relevanta aktiviteter i de studerade livscyklerna är inkluderade. Konsekvenserna av implementeringen av utsläppsfaktorerna undersöktes genom en jämförelse av resultat som erhölls i WAMPS då de nya samt de tidigare faktorerna nyttjas. Detta gjordes både per ton material samt genom ett enkelt scenario. Utvärderingen av den insamlade LCI datan påvisar att många av dataseten representerar genomsnittlig produktion inom Europa och att datan generellt var insamlad för minst 5 år sedan. Resultatet påvisar att dataseten är väldokumenterad enlig indikatorn som ställts upp i denna studie. Främst användes processer från EcoInvent för att utveckla de nya emissionsfaktorerna. Implementeringen av emissionsfaktorerna i WAMPS resulterade i signifikanta skillnader i potentiell miljöpåverkan per ton material, främst för bildning av fotooxid. För fallet med scenariot indikerade studiens resultat att en betydande förändring av den potentiella miljöbelastningen erhålls när de nya utsläppsfaktorerna implementeras. Dessutom påvisades en minskning av miljöeffekterna för alla kategorier varav eutrofiering visade den största absoluta skillnaden. Slutligen anses de utvecklade emissions faktorerna vara lämpliga utifrån utformningen av denna tes. Dock dras slutsatsen att dessa har flertalet begränsningar som är viktiga att ta i hänsyn ifall dessa implementeras i WAMPS i framtiden. Dessutom anses det vara fastställt att en fortsatt uppdatering kan anses rimlig utifrån det erhållna resultatet.
Dicksen, Jesper. "Skillnaden i koldioxidutsläpp mellan limträ och stål : En studie som jämför två olika stommaterial". Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-38146.
Texto completoToday, life-cycle assessment (LCA) are performed to identify the buildingcomponents that cause large carbon dioxide emissions in the construction industry.The purpose of this study is to use the life-cycle assessment tool One Click LCA tocompare how large carbon dioxide emissions are formed by the materials in aglulam frame, which belongs to an indoor arena compared to the materials in afictitious steel frame, which is dimensioned to withstand the same loads andfunction as the glulam frame. This is done in order to highlight the differencesbetween the carbon dioxide emissions in the product phase (A1-A3) between aglulam frame and a steel frame.A designer has designed the steel frame for comparison. The designer producedthe dimensions and building materials, but the steel frame was not sufficientlyworked out and projected for the comparison to be made directly.In One Click LCA, the quantities and building components for both frames areneeded to be able to make complete life-cycle assessment. By quantities is meantvolumes and weights for the building components. The study initially lackedquantities for some of the building components and part of the purpose wastherefore to produce all quantities for the frames. To get the right amounts in thestudy, two programs were used, Bluebeam and Excel. With these programs, thelength measurements for different building components were taken from drawings.Together with the other information about the building components, the quantitiescould then be produced.In One Click LCA, resources need to be selected. These can be linked to specificbuilding components and contain data on how large carbon dioxide emissions thatbuilding components cause. Based on building components and quantities,resources were then selected in One Click LCA. When resources are selected, theprogram calculates how large carbon dioxide emissions are formed in the productphase (A1-A3) for the building components. With quantities and resources, tworesults could be obtained in the software. The results show that 55 tonnes ofcarbon dioxide are formed by the glulam frame and 779.9 tonnes of carbon dioxideare formed by the steel frame. In the steel frame, it is the trusses that cause themost carbon dioxide emissions and in the glulam frame, the beams in the upperpart of the indoor arena cause the most carbon dioxide emissions.
Cangini, Francesco. "Valutazione della sostenibilità economico-ambientale della sopraelevazione di un edificio residenziale tramite l'applicazione dei metodi LCA e LCC". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Buscar texto completoDu, Guangli. "Life cycle assessment of bridges, model development and case studies". Doctoral thesis, KTH, Bro- och stålbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161196.
Texto completoQC 20150311
Facibeni, Gabriele. "Emissioni da uso dei pesticidi negli studi di Life Cycle Assessment: calcolo dell’inventario". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Buscar texto completoAlmutairi, Badriya L. "Investigating the feasibility and soil-structure integrity of onshore wind turbine systems in Kuwait". Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/27612.
Texto completoMiliutenko, Sofiia. "Life Cycle Impacts of Road Infrastructure : Assessment of energy use and greenhouse gas emissions". Licentiate thesis, KTH, Miljöstrategisk analys, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-89885.
Texto completoQC 20120229
Miliutenko, Sofiia. "Consideration of life cycle energy use and greenhouse gas emissions for improved road infrastructure planning". Doctoral thesis, KTH, Miljöstrategisk analys (fms), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184163.
Texto completoQC 20160329
Libros sobre el tema "Life cycle emission (LCE)"
Engineers, Society of Automotive y SAE World Congress (2006 : Detroit, Mich.), eds. Emission: Measurement, testing & modeling. Warrendale, PA: Society of Automotive Engineers, 2006.
Buscar texto completoHorne, Ralph E., Tim Grant y Karli Verghese. Life Cycle Assessment. CSIRO Publishing, 2009. http://dx.doi.org/10.1071/9780643097964.
Texto completoSadiq, Rehan, Kasun Hewage, Rajeev Ruparathna y Hirushie Karunathilake. Life Cycle Thinking for Net-Zero Energy and Emission Transformation. Elsevier Science & Technology Books, 2020.
Buscar texto completoEnvironmental life cycle cost analysis: A review of economic, energy and green house gas emission impacts of asphalt and concrete pavements. Ottawa: National Library of Canada, 2000.
Buscar texto completoPaulson, CAJ. Greenhouse Gas Control Technologies. Editado por RA Durie, DJ Williams, AY Smith y P. McMullan. CSIRO Publishing, 2001. http://dx.doi.org/10.1071/9780643105027.
Texto completoCapítulos de libros sobre el tema "Life cycle emission (LCE)"
Holst, Jens-Christian, Katrin Müller, Florian Ansgar Jaeger y Klaus Heidinger. "City Air Management: LCA-Based Decision Support Model to Improve Air Quality". En Towards a Sustainable Future - Life Cycle Management, 39–47. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_4.
Texto completoLange, Nora, David Moosmann, Stefan Majer, Kathleen Meisel, Katja Oehmichen, Stefan Rauh y Daniela Thrän. "Assessment of Greenhouse Gas Emission Reduction from Biogas Supply Chains in Germany in Context of a Newly Implemented Sustainability Certification". En Sustainable Production, Life Cycle Engineering and Management, 85–101. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29294-1_6.
Texto completoAggarwal, Neeraj K., Naveen Kumar y Mahak Mittal. "Life Cycle Analysis (LCA) in GHG Emission and Techno-economic Analysis (TEA) of Bioethanol Production". En Green Chemistry and Sustainable Technology, 179–90. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05091-6_14.
Texto completoCerdas, Felipe. "LCE and Electromobility". En Sustainable Production, Life Cycle Engineering and Management, 11–55. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82934-6_2.
Texto completoKeller, Heiko, Horst Fehrenbach, Nils Rettenmaier y Marie Hemmen. "Extending LCA Methodology for Assessing Liquid Biofuels by Phosphate Resource Depletion and Attributional Land Use/Land Use Change". En Towards a Sustainable Future - Life Cycle Management, 121–31. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_11.
Texto completoCerdas, Felipe. "State of Research—Review on LCE Modelling and Assessment Approaches for Electromobility". En Sustainable Production, Life Cycle Engineering and Management, 57–85. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82934-6_3.
Texto completoAlkhawaldeh, Ayah, Nour Betoush, Ansam Sawalha, Mohammad Alhassan y Khairedin Abdalla. "Life Cycle Assessment and Sustainability Characteristics of Built Environment Systems". En Lecture Notes in Civil Engineering, 523–31. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57800-7_48.
Texto completoCerdas, Felipe. "Exemplary Application: Analysis of Variability in the LCE of Batteries for Electric Vehicles". En Sustainable Production, Life Cycle Engineering and Management, 129–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82934-6_5.
Texto completoTippett, Arron Wilde. "Life Cycle Assessment of Fishing and Aquaculture Rope Recycling". En Marine Plastics: Innovative Solutions to Tackling Waste, 121–34. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31058-4_7.
Texto completoDalla Valle, Anna. "Life Cycle Assessment at the Early Stage of Building Design". En The Urban Book Series, 461–70. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_42.
Texto completoActas de conferencias sobre el tema "Life cycle emission (LCE)"
Wen, Ching-Mei, Charles Foster y Marianthi Ierapetritou. "Exploring Net-Zero Greenhouse Gas Emission Routes for Bio-Production of Triacetic Acid Lactone: An Evaluation through Techno-Economic Analysis and Life Cycle Assessment". En Foundations of Computer-Aided Process Design, 933–40. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.182968.
Texto completoLeon, David, David Bolonio, Isabel Amez, Roberto Paredes y Blanca Castells. "LIFE-CYCLE ANALYSIS OF FIREWORKS: ENVIRONMENTAL IMPACT AND IMPROVEMENT OPPORTUNITIES". En 24th SGEM International Multidisciplinary Scientific GeoConference 24, 139–48. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/4.1/s17.18.
Texto completoLokesh, Kadambari, Atma Prakash, Vishal Sethi, Eric Goodger y Pericles Pilidis. "Assessment of Life Cycle Emissions of Bio-SPKs for Jet Engines". En ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94238.
Texto completoKalluri, Sumanth, Pasi Lautala y Robert Handler. "Toward Integrated Life Cycle Assessment and Life Cycle Cost Analysis for Road and Multimodal Transportation Alternatives: A Case Study of the Highland Copper Project". En 2016 Joint Rail Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/jrc2016-5841.
Texto completoDeru, Michael. "Establishing Standard Source Energy and Emission Factors for Energy Use in Buildings". En ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36105.
Texto completoAl‐Gburi, Majid, Jaime Gonzalez‐Libreros, Gabriel Sas y Martin Nilsson. "Quantifying the Environmental Impact of Railway Bridges Using Life Cycle Assessment: A Case Study". En IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.1796.
Texto completoKominiarz, Mathis y Zeina Al-Nabulsi. "Life-cycle analysis of the Colne Valley Viaduct and assessment of optimised solutions". En IABSE Symposium, Manchester 2024: Construction’s Role for a World in Emergency. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2024. http://dx.doi.org/10.2749/manchester.2024.0451.
Texto completoFu, Yang, Buyu Wang y Shijin Shuai. "Life-cycle Analysis of Methanol Production from Coke Oven Gas in China". En Energy & Propulsion Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2023. http://dx.doi.org/10.4271/2023-01-1646.
Texto completoMorita, Yasutomo, Kenji Shimizu, Hirokazu Kato, Naoki Shibahara y Toshihiro Yamasaki. "A Study for the Measurement of Environmental Impact Resulting From Railway Construction". En 2011 Joint Rail Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/jrc2011-56006.
Texto completoLéonard, Angélique y S. Gerbinet. "Using Life Cycle Assessment methodology to minimize the environmental impact of dryers". En 21st International Drying Symposium. Valencia: Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7851.
Texto completoInformes sobre el tema "Life cycle emission (LCE)"
Koroma, Michael Samsu, Xun Xu y Abdulrahman Alwosheel. Life Cycle Assessment of Road Freight Decarbonization in Saudi Arabia. King Abdullah Petroleum Studies and Research Center, diciembre de 2024. https://doi.org/10.30573/ks--2024-dp63.
Texto completoSharma, Bhavna, Bryan Swanton, Joseph Kuo, Kimny Sysawang, Sachi Yagyu, Aneesa Motala, Danica Tolentino, Najmedin Meshkati y Susanne Hempel. Use of Life Cycle Assessment in the Healthcare Industry: Environmental Impacts and Emissions Associated With Products, Processes, and Waste. Agency for Healthcare Research and Quality (AHRQ), noviembre de 2024. http://dx.doi.org/10.23970/ahrqepctb48.
Texto completoShen, Bo y Zhenning LI. Perform Life Cycle Energy and GHG Emission Analysis, Select Candidate Refrigerant(s). Office of Scientific and Technical Information (OSTI), septiembre de 2021. http://dx.doi.org/10.2172/1819592.
Texto completoGathorne-Hardy, Alfred. A Life Cycle Assessment (LCA) of Greenhouse Gas Emissions from SRI and Flooded Rice Production in SE India. Taiwan Water Conservancy Journal, 2013. http://dx.doi.org/10.35648/20.500.12413/11781/ii250.
Texto completoAl-Qadi, Imad, Hasan Ozer, Mouna Krami Senhaji, Qingwen Zhou, Rebekah Yang, Seunggu Kang, Marshall Thompson et al. A Life-Cycle Methodology for Energy Use by In-Place Pavement Recycling Techniques. Illinois Center for Transportation, octubre de 2020. http://dx.doi.org/10.36501/0197-9191/20-018.
Texto completoLinan, Dun. Research on carbon emission of urban residents’ three types of dining based on the whole life cycle. Envirarxiv, abril de 2022. http://dx.doi.org/10.55800/envirarxiv276.
Texto completoAlwosheel, Abdulrahman y Michael Samsu Koroma. Environmental Performance of Passenger Cars in the KSA: Comparison of Different Technologies via a Life Cycle Assessment Approach. King Abdullah Petroleum Studies and Research Center, diciembre de 2024. https://doi.org/10.30573/ks--2024-dp69.
Texto completoKester, Josco, Ji Liu y Ashish Binani. Carbon Footprint of Floating PV Systems. International Energy Agency Photovoltaic Power Systems Programme, 2024. http://dx.doi.org/10.69766/jgaz9626.
Texto completoFact Sheet: Environmental Life Cycle Assessment of Electricity from PV Systems. IEA Photovoltaic Power Systems Programme (PVPS), 2024. http://dx.doi.org/10.69766/algs2169.
Texto completo