Literatura académica sobre el tema "Lie transformation groups"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Lie transformation groups".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Lie transformation groups"
Miao, Xu y Rajesh P. N. Rao. "Learning the Lie Groups of Visual Invariance". Neural Computation 19, n.º 10 (octubre de 2007): 2665–93. http://dx.doi.org/10.1162/neco.2007.19.10.2665.
Texto completoAl-Shomrani, M. M. "Lie Groups Analysis and Contact Transformations for Ito System". Abstract and Applied Analysis 2012 (2012): 1–12. http://dx.doi.org/10.1155/2012/342680.
Texto completoFIGUEROA-O’FARRILL, JOSÉ M. y SONIA STANCIU. "POISSON LIE GROUPS AND THE MIURA TRANSFORMATION". Modern Physics Letters A 10, n.º 36 (30 de noviembre de 1995): 2767–73. http://dx.doi.org/10.1142/s0217732395002908.
Texto completoCariñena, Jose F., Mariano A. Del Olmo y Mariano Santander. "Locally operating realizations of transformation Lie groups". Journal of Mathematical Physics 26, n.º 9 (septiembre de 1985): 2096–106. http://dx.doi.org/10.1063/1.526974.
Texto completoLin, Feng, Haohang Xu, Houqiang Li, Hongkai Xiong y Guo-Jun Qi. "Auto-Encoding Transformations in Reparameterized Lie Groups for Unsupervised Learning". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 10 (18 de mayo de 2021): 8610–17. http://dx.doi.org/10.1609/aaai.v35i10.17044.
Texto completoGarcía‐Prada, Oscar, Mariano A. del Olmo y Mariano Santander. "Locally operating realizations of nonconnected transformation Lie groups". Journal of Mathematical Physics 29, n.º 5 (mayo de 1988): 1083–90. http://dx.doi.org/10.1063/1.527946.
Texto completoNesterenko, Maryna O. "Transformation groups on real plane and their differential invariants". International Journal of Mathematics and Mathematical Sciences 2006 (2006): 1–17. http://dx.doi.org/10.1155/ijmms/2006/17410.
Texto completoNikonov, V. I. "The application of Lie algebras and groups to the solution of problems of partial stability of dynamical systems". Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 20, n.º 3 (6 de septiembre de 2018): 295–303. http://dx.doi.org/10.15507/2079-6900.20.201802.295-303.
Texto completoNikonov, Vladimir I. "The application of Lie algebras and groups to the solution of problems of partial stability of dynamical systems". Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva 20, n.º 3 (6 de septiembre de 2018): 295–303. http://dx.doi.org/10.15507/2079-6900.20.201803.295-303.
Texto completoRussell, Thomas. "Gorman demand systems and lie transformation groups: A reply". Economics Letters 51, n.º 2 (mayo de 1996): 201–4. http://dx.doi.org/10.1016/0165-1765(96)00806-3.
Texto completoTesis sobre el tema "Lie transformation groups"
Günther, Janne-Kathrin. "The C*-algebras of certain Lie groups". Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0118/document.
Texto completoIn this doctoral thesis, the C*-algebras of the connected real two-step nilpotent Lie groups and the Lie group SL(2,R) are characterized. Furthermore, as a preparation for an analysis of its C*-algebra, the topology of the spectrum of the semidirect product U(n) x H_n is described, where H_n denotes the Heisenberg Lie group and U(n) the unitary group acting by automorphisms on H_n. For the determination of the group C*-algebras, the operator valued Fourier transform is used in order to map the respective C*-algebra into the algebra of all bounded operator fields over its spectrum. One has to find the conditions that are satisfied by the image of this C*-algebra under the Fourier transform and the aim is to characterize it through these conditions. In the present thesis, it is proved that both the C*-algebras of the connected real two-step nilpotent Lie groups and the C*-algebra of SL(2,R) fulfill the same conditions, namely the “norm controlled dual limit” conditions. Thereby, these C*-algebras are described in this work and the “norm controlled dual limit” conditions are explicitly computed in both cases. The methods used for the two-step nilpotent Lie groups and the group SL(2,R) are completely different from each other. For the two-step nilpotent Lie groups, one regards their coadjoint orbits and uses the Kirillov theory, while for the group SL(2,R) one can accomplish the calculations more directly
Ramgulam, Usha. "Lie groups and Bäcklund transformations : application to nonlinear physical models". Thesis, Loughborough University, 1991. https://dspace.lboro.ac.uk/2134/26895.
Texto completoZahir, Hamid. "Produits STAR et représentation des groupes de Lie". Metz, 1991. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1991/Zahir.Hamid.SMZ9116.pdf.
Texto completoMizony, Michel. "Semi-groupes de Lie et fonctions de Jacobi de deuxième espèce". Lyon 1, 1987. http://www.theses.fr/1987LYO19015.
Texto completoZahir, Hamid Arnal Didier. "Produits star et représentation des groupes de lie". [S.l.] : [s.n.], 1991. ftp://ftp.scd.univ-metz.fr/pub/Theses/1991/Zahir.Hamid.SMZ9116.pdf.
Texto completoCogliati, A. "CONTINUOUS GROUPS OF TRANSFORMATIONS: ELIE CARTAN'S STRUCTURAL APPROACH". Doctoral thesis, Università degli Studi di Milano, 2012. http://hdl.handle.net/2434/214787.
Texto completoDhieb, Semi. "Transformée de Fourier adaptée et convoluteurs de Schwartz sur les groupes de Lie nilpotents". Metz, 1995. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1995/Dhieb.Semi.SMZ9510.pdf.
Texto completoThe adapted Fourier transform, so-called nilpotent Fourier transform, was first introduced by D. Arnal and J. C. Cortet as a generalisation of the usual abelian Fourier transform. This definition was limited at the orbits of the group under the coadjont action. We define in this thesis new adapted Fourier transforms on the dual of the Lie algebra and the product of this dual space with the set of all Malcev bases. Then, we study Schwartz multipliers for nilpotent Lie groups and we give an idea to prove Howe conjecture that characterizes the bi-invariant Schwartz multipliers on nilpotent Lie groups. Such characterization is given as the following : a tempered distribution on a nilpotent group Lie is a bi-invariant Schwartz multiplier if and only if its Fourier transform as a distribution is a smooth, Ad*-invariant function on the dual of the Lie algebra and all of its derivatives have polynomial bounds. Finally, we define Schwartz multipliers for variable nilpotent Lie groups and we characterize them as a bove
Garimella, Venkatalakshmi Gayatri. "Théorèmes de Paley-Wiener - opérateurs differentiels invariants sur les groupes de Lie nilpotents". Poitiers, 1997. http://www.theses.fr/1997POIT2277.
Texto completoMaillard, Jean-Marie. "Intégrabilité, série discrète des groupes de Lorentz et transformation de Weyl des distributions tempérées". Dijon, 1986. http://www.theses.fr/1986DIJOS025.
Texto completoLanzmann, Emmanuel. "Le théorème d'annulation dans le cadre des super-algèbres de lie complètement réductibles et de leurs groupes quantiques". Paris 6, 2000. http://www.theses.fr/2000PA066260.
Texto completoLibros sobre el tema "Lie transformation groups"
L, Onishchik A. y Vinberg Ė B, eds. Foundations of Lie theory and Lie transformation groups. Berlin: Springer, 1997.
Buscar texto completoTransformation groups. Berlin: W. de Gruyter, 1987.
Buscar texto completoStraume, Eldar. Compact connected Lie transformation groups on spheres with low cohomogeneity, II. Providence, R.I: American Mathematical Society, 1997.
Buscar texto completoOnishchik, A. L. Topology of transitive transformation groups. Leipzig: Johann Ambrosius Barth, 1994.
Buscar texto completoAnthony, Bak, Morimoto Masaharu y Ushitaki Fumihiro, eds. Current trends in transformation groups. Dordrecht: Kluwer, 2002.
Buscar texto completoCompact connected lie transformation groups on spheres with low cohomogeneity, I. Providence, R.I: American Mathematical Society, 1996.
Buscar texto completoSophus Lie and Felix Klein: The Erlangen program and its impact in mathematics and physics. Providence: European Mathematical Society, 2015.
Buscar texto completoBilinear control systems: Matrices in action. Dordrecht: Springer, 2009.
Buscar texto completoB, Carrell James y McGovern William M. 1959-, eds. Algebraic quotients: Torus actions and cohomology / J.B. Carrell. The adjoint representation and the adjoint action / W.M. McGovern. Berlin: Springer, 2002.
Buscar texto completoDynamical systems and group actions. Providence, R.I: American Mathematical Society, 2012.
Buscar texto completoCapítulos de libros sobre el tema "Lie transformation groups"
Barndorff-Nielsen, Ole E., Preben Blæsild y Poul Svante Eriksen. "Matrix Lie groups". En Decomposition and Invariance of Measures, and Statistical Transformation Models, 15–27. New York, NY: Springer New York, 1989. http://dx.doi.org/10.1007/978-1-4612-3682-5_3.
Texto completoKawakubo, Katsuo. "G-s-cobordism theorems do not hold in general for many compact lie groups G". En Transformation Groups, 183–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0085608.
Texto completoHsiang, Wu-Yi. "Lie transformation groups and differential geometry". En Lecture Notes in Mathematics, 34–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0077679.
Texto completoHelgason, Sigurdur. "Lie Transformation Groups and Differential Operators". En Integral Geometry and Radon Transforms, 253–63. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6055-9_8.
Texto completoIllman, Sören. "The isomorphism class of a representation of a compact lie group is determined by the equivariant simple-homotopy type of the representation". En Transformation Groups, 98–110. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/bfb0085602.
Texto completoIbragimov, Nail H. "Equations with Infinite Lie-Bäcklund Groups". En Transformation Groups Applied to Mathematical Physics, 253–313. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5243-0_5.
Texto completoLie, Sophus. "Three Principles of Thought Governing the Theory of Lie". En Theory of Transformation Groups I, 3–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46211-9_1.
Texto completoIbragimov, Nail H. "Introduction to the Theory of Lie-Bäcklund Groups". En Transformation Groups Applied to Mathematical Physics, 190–252. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5243-0_4.
Texto completoHawkins, Thomas. "Lie’s Theory of Transformation Groups: 1874–1893". En Emergence of the Theory of Lie Groups, 75–99. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1202-7_3.
Texto completoAlekseevskij, D. V., V. V. Lychagin y A. M. Vinogradov. "The Group Approach of Lie and Klein. The Geometry of Transformation Groups". En Geometry I, 92–113. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-02712-7_4.
Texto completoActas de conferencias sobre el tema "Lie transformation groups"
Tarama, Daisuke y Jean-Pierre Françoise. "Dynamical Systems over Lie Groups Associated with Statistical Transformation Models". En MaxEnt 2022. Basel Switzerland: MDPI, 2022. http://dx.doi.org/10.3390/psf2022005021.
Texto completoWang, Ching Ming, Jascha Shol-Dickstein, Ivana Tosic y Bruno A. Olshausen. "Lie Group Transformation Models for Predictive Video Coding". En 2011 Data Compression Conference (DCC). IEEE, 2011. http://dx.doi.org/10.1109/dcc.2011.93.
Texto completoGaur, Manoj y K. Singh. "Lie group of transformations for time fractional Gardner equation". En DIDACTIC TRANSFER OF PHYSICS KNOWLEDGE THROUGH DISTANCE EDUCATION: DIDFYZ 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0080583.
Texto completoBru¨ls, Olivier, Martin Arnold y Alberto Cardona. "Two Lie Group Formulations for Dynamic Multibody Systems With Large Rotations". En ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48132.
Texto completoMurakami, Hidenori. "A Moving Frame Method for Multi-Body Dynamics Using SE(3)". En ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-51192.
Texto completoChiao, Raymond Y., Paul G. Kwiat, William A. Vareka y Thomas F. Jordan. "Lorentz-group Berry phases in squeezed light". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.mr17.
Texto completoDjanelidze, M. G. "Territory Attractiveness for Human Capital and Innovative Development". En Problems of transformation and regulation of regional socio- economic systems. Saint Petersburg State University of Aerospace Instrumentation, 2021. http://dx.doi.org/10.52897/978-5-8088-1635-0-2021-49-25-37.
Texto completoPecherskaya, Nadezhda. "MENTAL COHESION AS A FACTOR OF POLITICAL CULTURE". En Globalistics-2020: Global issues and the future of humankind. Interregional Social Organization for Assistance of Studying and Promotion the Scientific Heritage of N.D. Kondratieff / ISOASPSH of N.D. Kondratieff, 2020. http://dx.doi.org/10.46865/978-5-901640-33-3-2020-189-195.
Texto completoChen, Genliang, Hao Wang, Yong Zhong y Haidong Yu. "A Lie Group Formulation of the Newton-Euler Equations and its Application to Robot Dynamics". En ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-47221.
Texto completoTakada, Takumi, Wataru Shimaya, Yoshiyuki Ohmura y Yasuo Kuniyoshi. "Disentangling Patterns and Transformations from One Sequence of Images with Shape-invariant Lie Group Transformer". En 2022 IEEE International Conference on Development and Learning (ICDL). IEEE, 2022. http://dx.doi.org/10.1109/icdl53763.2022.9962232.
Texto completoInformes sobre el tema "Lie transformation groups"
Arvanitoyeorgos, Andreas. Lie Transformation Groups and Geometry. GIQ, 2012. http://dx.doi.org/10.7546/giq-9-2008-11-35.
Texto completoJames P. Lewis. ?Structural Transformations in Ceramics: Perovskite-like Oxides and Group III, IV, and V Nitrides? Office of Scientific and Technical Information (OSTI), diciembre de 2006. http://dx.doi.org/10.2172/909138.
Texto completoTaherizadeh, Amir y Cathrine Beaudry. Vers une meilleure compréhension de la transformation numérique optimisée par l’IA et de ses implications pour les PME manufacturières au Canada - Une recherche qualitative exploratoire. CIRANO, junio de 2021. http://dx.doi.org/10.54932/jdxb2231.
Texto completoHaider, Huma. Scalability of Transitional Justice and Reconciliation Interventions: Moving Toward Wider Socio-political Change. Institute of Development Studies (IDS), marzo de 2021. http://dx.doi.org/10.19088/k4d.2021.080.
Texto completoDe Wit, Paul. Securing Land Tenure for Prosperity of the Planet and its Peoples. Rights and Resources Initiative, febrero de 2023. http://dx.doi.org/10.53892/ogcw7082.
Texto completoLundgren, Anna, Alex Cuadrado, Mari Wøien Meijer, Hjördís Rut Sigurjónsdottir, Eeva Turunen, Viktor Salenius, Jukka Teräs, Jens Bjørn Gefke Grelck y Stian Lundvall Berg. Skills Policies - Building Capacities for Innovative and Resilient Nordic Regions. Nordregio, noviembre de 2020. http://dx.doi.org/10.6027/r2020:17.1403-2503.
Texto completoSpecial Bulletin: NDC Invest: Supporting Transformational Climate Policy and Finance in Latin American and the Caribbean. Inter-American Development Bank, julio de 2021. http://dx.doi.org/10.18235/0003416.
Texto completo