Artículos de revistas sobre el tema "Learning on graphs"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Learning on graphs".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Huang, Xueqin, Xianqiang Zhu, Xiang Xu, Qianzhen Zhang y Ailin Liang. "Parallel Learning of Dynamics in Complex Systems". Systems 10, n.º 6 (15 de diciembre de 2022): 259. http://dx.doi.org/10.3390/systems10060259.
Texto completoZeng, Jiaqi y Pengtao Xie. "Contrastive Self-supervised Learning for Graph Classification". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de mayo de 2021): 10824–32. http://dx.doi.org/10.1609/aaai.v35i12.17293.
Texto completoFionda, Valeria y Giuseppe Pirrò. "Learning Triple Embeddings from Knowledge Graphs". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 3874–81. http://dx.doi.org/10.1609/aaai.v34i04.5800.
Texto completoZainullina, R. "Automatic Graph Generation for E-learning Systems". Bulletin of Science and Practice 7, n.º 6 (15 de junio de 2021): 12–16. http://dx.doi.org/10.33619/2414-2948/67/01.
Texto completoHu, Shengze, Weixin Zeng, Pengfei Zhang y Jiuyang Tang. "Neural Graph Similarity Computation with Contrastive Learning". Applied Sciences 12, n.º 15 (29 de julio de 2022): 7668. http://dx.doi.org/10.3390/app12157668.
Texto completoXiang, Xintao, Tiancheng Huang y Donglin Wang. "Learning to Evolve on Dynamic Graphs (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 11 (28 de junio de 2022): 13091–92. http://dx.doi.org/10.1609/aaai.v36i11.21682.
Texto completoKim, Jaehyeon, Sejong Lee, Yushin Kim, Seyoung Ahn y Sunghyun Cho. "Graph Learning-Based Blockchain Phishing Account Detection with a Heterogeneous Transaction Graph". Sensors 23, n.º 1 (1 de enero de 2023): 463. http://dx.doi.org/10.3390/s23010463.
Texto completoMa, Yunpu y Volker Tresp. "Quantum Machine Learning Algorithm for Knowledge Graphs". ACM Transactions on Quantum Computing 2, n.º 3 (30 de septiembre de 2021): 1–28. http://dx.doi.org/10.1145/3467982.
Texto completoMa, Guixiang, Nesreen K. Ahmed, Theodore L. Willke y Philip S. Yu. "Deep graph similarity learning: a survey". Data Mining and Knowledge Discovery 35, n.º 3 (24 de marzo de 2021): 688–725. http://dx.doi.org/10.1007/s10618-020-00733-5.
Texto completoLee, Namkyeong, Junseok Lee y Chanyoung Park. "Augmentation-Free Self-Supervised Learning on Graphs". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 7 (28 de junio de 2022): 7372–80. http://dx.doi.org/10.1609/aaai.v36i7.20700.
Texto completoZhang, Tong, Yun Wang, Zhen Cui, Chuanwei Zhou, Baoliang Cui, Haikuan Huang y Jian Yang. "Deep Wasserstein Graph Discriminant Learning for Graph Classification". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 12 (18 de mayo de 2021): 10914–22. http://dx.doi.org/10.1609/aaai.v35i12.17303.
Texto completoChristensen, Andrew J., Ananya Sen Gupta y Ivars Kirsteins. "Graph representation learning on braid manifolds". Journal of the Acoustical Society of America 152, n.º 4 (octubre de 2022): A39. http://dx.doi.org/10.1121/10.0015466.
Texto completoJames, Jinto, K. A. Germina y P. Shaini. "Learning graphs and 1-uniform dcsl graphs". Discrete Mathematics, Algorithms and Applications 09, n.º 04 (agosto de 2017): 1750046. http://dx.doi.org/10.1142/s179383091750046x.
Texto completoZhuang, Jun y Mohammad Al Hasan. "Defending Graph Convolutional Networks against Dynamic Graph Perturbations via Bayesian Self-Supervision". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 4 (28 de junio de 2022): 4405–13. http://dx.doi.org/10.1609/aaai.v36i4.20362.
Texto completoGerofsky, Susan. "Mathematical learning and gesture". Gesture and Multimodal Development 10, n.º 2-3 (31 de diciembre de 2010): 321–43. http://dx.doi.org/10.1075/gest.10.2-3.10ger.
Texto completoBahrami, Saeedeh, Alireza Bosaghzadeh y Fadi Dornaika. "Multi Similarity Metric Fusion in Graph-Based Semi-Supervised Learning". Computation 7, n.º 1 (7 de marzo de 2019): 15. http://dx.doi.org/10.3390/computation7010015.
Texto completoWald, Johanna, Nassir Navab y Federico Tombari. "Learning 3D Semantic Scene Graphs with Instance Embeddings". International Journal of Computer Vision 130, n.º 3 (22 de enero de 2022): 630–51. http://dx.doi.org/10.1007/s11263-021-01546-9.
Texto completoCUCKA, PETER, NATHAN S. NETANYAHU y AZRIEL ROSENFELD. "LEARNING IN NAVIGATION: GOAL FINDING IN GRAPHS". International Journal of Pattern Recognition and Artificial Intelligence 10, n.º 05 (agosto de 1996): 429–46. http://dx.doi.org/10.1142/s0218001496000281.
Texto completoBai, Yunsheng, Hao Ding, Ken Gu, Yizhou Sun y Wei Wang. "Learning-Based Efficient Graph Similarity Computation via Multi-Scale Convolutional Set Matching". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 3219–26. http://dx.doi.org/10.1609/aaai.v34i04.5720.
Texto completoGIBERT, JAUME, ERNEST VALVENY y HORST BUNKE. "EMBEDDING OF GRAPHS WITH DISCRETE ATTRIBUTES VIA LABEL FREQUENCIES". International Journal of Pattern Recognition and Artificial Intelligence 27, n.º 03 (mayo de 2013): 1360002. http://dx.doi.org/10.1142/s0218001413600021.
Texto completoJung, Jinhong, Jaemin Yoo y U. Kang. "Signed random walk diffusion for effective representation learning in signed graphs". PLOS ONE 17, n.º 3 (17 de marzo de 2022): e0265001. http://dx.doi.org/10.1371/journal.pone.0265001.
Texto completoJavad Hosseini, Mohammad, Nathanael Chambers, Siva Reddy, Xavier R. Holt, Shay B. Cohen, Mark Johnson y Mark Steedman. "Learning Typed Entailment Graphs with Global Soft Constraints". Transactions of the Association for Computational Linguistics 6 (diciembre de 2018): 703–17. http://dx.doi.org/10.1162/tacl_a_00250.
Texto completoBalcı, Mehmet Ali, Ömer Akgüller, Larissa M. Batrancea y Lucian Gaban. "Discrete Geodesic Distribution-Based Graph Kernel for 3D Point Clouds". Sensors 23, n.º 5 (21 de febrero de 2023): 2398. http://dx.doi.org/10.3390/s23052398.
Texto completoLi, Shuai, Wei Chen, Zheng Wen y Kwong-Sak Leung. "Stochastic Online Learning with Probabilistic Graph Feedback". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 4675–82. http://dx.doi.org/10.1609/aaai.v34i04.5899.
Texto completoMakarov, Ilya, Dmitrii Kiselev, Nikita Nikitinsky y Lovro Subelj. "Survey on graph embeddings and their applications to machine learning problems on graphs". PeerJ Computer Science 7 (4 de febrero de 2021): e357. http://dx.doi.org/10.7717/peerj-cs.357.
Texto completoYao, Huaxiu, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh Chawla y Zhenhui Li. "Graph Few-Shot Learning via Knowledge Transfer". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 04 (3 de abril de 2020): 6656–63. http://dx.doi.org/10.1609/aaai.v34i04.6142.
Texto completoBera, Abhijit, Mrinal Kanti Ghose y Dibyendu Kumar Pal. "Graph Classification Using Back Propagation Learning Algorithms". International Journal of Systems and Software Security and Protection 11, n.º 2 (julio de 2020): 1–12. http://dx.doi.org/10.4018/ijsssp.2020070101.
Texto completoAbualkishik, Abedallah Z., Rasha Almajed y William Thompson. "Trustworthy Federated Graph Learning Framework for Wireless Internet of Things". International Journal of Wireless and Ad Hoc Communication 5, n.º 2 (2022): 48–63. http://dx.doi.org/10.54216/ijwac.050204.
Texto completoAbualkishik, Abedallah Z., Rasha Almajed y William Thompson. "Trustworthy Federated Graph Learning Framework for Wireless Internet of Things". International Journal of Wireless and Ad Hoc Communication 6, n.º 1 (2023): 50–62. http://dx.doi.org/10.54216/ijwac.060105.
Texto completoNi, Xiang, Jing Li, Mo Yu, Wang Zhou y Kun-Lung Wu. "Generalizable Resource Allocation in Stream Processing via Deep Reinforcement Learning". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 01 (3 de abril de 2020): 857–64. http://dx.doi.org/10.1609/aaai.v34i01.5431.
Texto completoGuo, Zhijiang, Yan Zhang, Zhiyang Teng y Wei Lu. "Densely Connected Graph Convolutional Networks for Graph-to-Sequence Learning". Transactions of the Association for Computational Linguistics 7 (noviembre de 2019): 297–312. http://dx.doi.org/10.1162/tacl_a_00269.
Texto completoBéthune, Louis, Yacouba Kaloga, Pierre Borgnat, Aurélien Garivier y Amaury Habrard. "Hierarchical and Unsupervised Graph Representation Learning with Loukas’s Coarsening". Algorithms 13, n.º 9 (21 de agosto de 2020): 206. http://dx.doi.org/10.3390/a13090206.
Texto completoLi, Yanying. "Characterizing the Minimal Essential Graphs of Maximal Ancestral Graphs". International Journal of Pattern Recognition and Artificial Intelligence 34, n.º 04 (5 de agosto de 2019): 2059009. http://dx.doi.org/10.1142/s0218001420590090.
Texto completoAlbergante, Luca, Evgeny Mirkes, Jonathan Bac, Huidong Chen, Alexis Martin, Louis Faure, Emmanuel Barillot, Luca Pinello, Alexander Gorban y Andrei Zinovyev. "Robust and Scalable Learning of Complex Intrinsic Dataset Geometry via ElPiGraph". Entropy 22, n.º 3 (4 de marzo de 2020): 296. http://dx.doi.org/10.3390/e22030296.
Texto completoJaeger, Manfred, Jens D. Nielsen y Tomi Silander. "Learning probabilistic decision graphs". International Journal of Approximate Reasoning 42, n.º 1-2 (mayo de 2006): 84–100. http://dx.doi.org/10.1016/j.ijar.2005.10.006.
Texto completoThanou, Dorina, Xiaowen Dong, Daniel Kressner y Pascal Frossard. "Learning Heat Diffusion Graphs". IEEE Transactions on Signal and Information Processing over Networks 3, n.º 3 (septiembre de 2017): 484–99. http://dx.doi.org/10.1109/tsipn.2017.2731164.
Texto completoZhu, Jun. "Learning representations on graphs". National Science Review 5, n.º 1 (1 de enero de 2018): 21. http://dx.doi.org/10.1093/nsr/nwx147.
Texto completoMadhawa, Kaushalya y Tsuyoshi Murata. "Active Learning for Node Classification: An Evaluation". Entropy 22, n.º 10 (16 de octubre de 2020): 1164. http://dx.doi.org/10.3390/e22101164.
Texto completoSun, Yuan, Andong Chen, Chaofan Chen, Tianci Xia y Xiaobing Zhao. "A Joint Model for Representation Learning of Tibetan Knowledge Graph Based on Encyclopedia". ACM Transactions on Asian and Low-Resource Language Information Processing 20, n.º 2 (30 de marzo de 2021): 1–17. http://dx.doi.org/10.1145/3447248.
Texto completoPiao, Yinhua, Sangseon Lee, Dohoon Lee y Sun Kim. "Sparse Structure Learning via Graph Neural Networks for Inductive Document Classification". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 10 (28 de junio de 2022): 11165–73. http://dx.doi.org/10.1609/aaai.v36i10.21366.
Texto completoMonka, Sebastian, Lavdim Halilaj y Achim Rettinger. "A survey on visual transfer learning using knowledge graphs". Semantic Web 13, n.º 3 (6 de abril de 2022): 477–510. http://dx.doi.org/10.3233/sw-212959.
Texto completoXie, Anze, Anders Carlsson, Jason Mohoney, Roger Waleffe, Shanan Peters, Theodoros Rekatsinas y Shivaram Venkataraman. "Demo of marius". Proceedings of the VLDB Endowment 14, n.º 12 (julio de 2021): 2759–62. http://dx.doi.org/10.14778/3476311.3476338.
Texto completoLee, Kwangyon, Haemin Jung, June Seok Hong y Wooju Kim. "Learning Knowledge Using Frequent Subgraph Mining from Ontology Graph Data". Applied Sciences 11, n.º 3 (20 de enero de 2021): 932. http://dx.doi.org/10.3390/app11030932.
Texto completoZhao, Jianan, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song y Yanfang Ye. "Heterogeneous Graph Structure Learning for Graph Neural Networks". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 5 (18 de mayo de 2021): 4697–705. http://dx.doi.org/10.1609/aaai.v35i5.16600.
Texto completoGarcia-Hernandez, Carlos, Alberto Fernández y Francesc Serratosa. "Learning the Edit Costs of Graph Edit Distance Applied to Ligand-Based Virtual Screening". Current Topics in Medicinal Chemistry 20, n.º 18 (24 de agosto de 2020): 1582–92. http://dx.doi.org/10.2174/1568026620666200603122000.
Texto completoZhang, Kainan, Zhipeng Cai y Daehee Seo. "Privacy-Preserving Federated Graph Neural Network Learning on Non-IID Graph Data". Wireless Communications and Mobile Computing 2023 (3 de febrero de 2023): 1–13. http://dx.doi.org/10.1155/2023/8545101.
Texto completoVaghani, Dev. "An Approch for Representation of Node Using Graph Transformer Networks". International Journal for Research in Applied Science and Engineering Technology 11, n.º 1 (31 de enero de 2023): 27–37. http://dx.doi.org/10.22214/ijraset.2023.48485.
Texto completoRuf, Verena, Anna Horrer, Markus Berndt, Sarah Isabelle Hofer, Frank Fischer, Martin R. Fischer, Jan M. Zottmann, Jochen Kuhn y Stefan Küchemann. "A Literature Review Comparing Experts’ and Non-Experts’ Visual Processing of Graphs during Problem-Solving and Learning". Education Sciences 13, n.º 2 (19 de febrero de 2023): 216. http://dx.doi.org/10.3390/educsci13020216.
Texto completoPeng, Yun, Byron Choi y Jianliang Xu. "Graph Learning for Combinatorial Optimization: A Survey of State-of-the-Art". Data Science and Engineering 6, n.º 2 (28 de abril de 2021): 119–41. http://dx.doi.org/10.1007/s41019-021-00155-3.
Texto completoReba, Kristjan, Matej Guid, Kati Rozman, Dušanka Janežič y Janez Konc. "Exact Maximum Clique Algorithm for Different Graph Types Using Machine Learning". Mathematics 10, n.º 1 (28 de diciembre de 2021): 97. http://dx.doi.org/10.3390/math10010097.
Texto completo