Índice

  1. Tesis

Literatura académica sobre el tema "Learning on graphs"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Learning on graphs".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Tesis sobre el tema "Learning on graphs"

1

Vitale, F. "FAST LEARNING ON GRAPHS." Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/155500.

Texto completo
Resumen
We carry out a systematic study of classification problems on networked data, presenting novel techniques with good performance both in theory and in practice. We assess the power of node classification based on class-linkage information only. In particular, we propose four new algorithms that exploit the homiphilic bias (linked entities tend to belong to the same class) in different ways. The set of the algorithms we present covers diverse practical needs: some of them operate in an active transductive setting and others in an on-line transductive setting. A third group works within an explorative protocol, in which the vertices of an unknown graph are progressively revealed to the learner in an on-line fashion. Within the mistake bound learning model, for each of our algorithms we provide a rigorous theoretical analysis, together with an interpretation of the obtained performance bounds. We also design adversarial strategies achieving matching lower bounds. In particular, we prove optimality for all input graphs and for all fixed regularity values of suitable labeling complexity measures. We also analyze the computational requirements of our methods, showing that our algorithms can to handle very large data sets. In the case of the on-line protocol, for which we exhibit an optimal algorithm with constant amortized time per prediction, we validate our theoretical results carrying out experiments on real-world datasets.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Irniger, Christophe-André. "Graph matching filtering databases of graphs using machine learning techniques." Berlin Aka, 2005. http://deposit.ddb.de/cgi-bin/dokserv?id=2677754&prov=M&dok_var=1&dok_ext=htm.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Simonovsky, Martin. "Deep learning on attributed graphs." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1133/document.

Texto completo
Resumen
Le graphe est un concept puissant pour la représentation des relations entre des paires d'entités. Les données ayant une structure de graphes sous-jacente peuvent être trouvées dans de nombreuses disciplines, décrivant des composés chimiques, des surfaces des modèles tridimensionnels, des interactions sociales ou des bases de connaissance, pour n'en nommer que quelques-unes. L'apprentissage profond (DL) a accompli des avancées significatives dans une variété de tâches d'apprentissage automatique au cours des dernières années, particulièrement lorsque les données sont structurées sur une grille, comme dans la compréhension du texte, de la parole ou des images. Cependant, étonnamment peu de choses ont été faites pour explorer l'applicabilité de DL directement sur des données structurées sous forme des graphes. L'objectif de cette thèse est d'étudier des architectures de DL sur des graphes et de rechercher comment transférer, adapter ou généraliser à ce domaine des concepts qui fonctionnent bien sur des données séquentielles et des images. Nous nous concentrons sur deux primitives importantes : le plongement de graphes ou leurs nœuds dans une représentation de l'espace vectorielle continue (codage) et, inversement, la génération des graphes à partir de ces vecteurs (décodage). Nous faisons les contributions suivantes. Tout d'abord, nous introduisons Edge-Conditioned Convolutions (ECC), une opération de type convolution sur les graphes réalisés dans le domaine spatial où les filtres sont générés dynamiquement en fonction des attributs des arêtes. La méthode est utilisée pour coder des graphes avec une structure arbitraire et variable. Deuxièmement, nous proposons SuperPoint Graph, une représentation intermédiaire de nuages de points avec de riches attributs des arêtes codant la relation contextuelle entre des parties des objets. Sur la base de cette représentation, l'ECC est utilisé pour segmenter les nuages de points à grande échelle sans sacrifier les détails les plus fins. Troisièmement, nous présentons GraphVAE, un générateur de graphes permettant de décoder des graphes avec un nombre de nœuds variable mais limité en haut, en utilisant la correspondance approximative des graphes pour aligner les prédictions d'un auto-encodeur avec ses entrées. La méthode est appliquée à génération de molécules<br>Graph is a powerful concept for representation of relations between pairs of entities. Data with underlying graph structure can be found across many disciplines, describing chemical compounds, surfaces of three-dimensional models, social interactions, or knowledge bases, to name only a few. There is a natural desire for understanding such data better. Deep learning (DL) has achieved significant breakthroughs in a variety of machine learning tasks in recent years, especially where data is structured on a grid, such as in text, speech, or image understanding. However, surprisingly little has been done to explore the applicability of DL on graph-structured data directly.The goal of this thesis is to investigate architectures for DL on graphs and study how to transfer, adapt or generalize concepts working well on sequential and image data to this domain. We concentrate on two important primitives: embedding graphs or their nodes into a continuous vector space representation (encoding) and, conversely, generating graphs from such vectors back (decoding). To that end, we make the following contributions.First, we introduce Edge-Conditioned Convolutions (ECC), a convolution-like operation on graphs performed in the spatial domain where filters are dynamically generated based on edge attributes. The method is used to encode graphs with arbitrary and varying structure.Second, we propose SuperPoint Graph, an intermediate point cloud representation with rich edge attributes encoding the contextual relationship between object parts. Based on this representation, ECC is employed to segment large-scale point clouds without major sacrifice in fine details.Third, we present GraphVAE, a graph generator allowing to decode graphs with variable but upper-bounded number of nodes making use of approximate graph matching for aligning the predictions of an autoencoder with its inputs. The method is applied to the task of molecule generation
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rosar, Kós Lassance Carlos Eduardo. "Graphs for deep learning representations." Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2020. http://www.theses.fr/2020IMTA0204.

Texto completo
Resumen
Ces dernières années, les méthodes d'apprentissage profond ont atteint l'état de l'art dans une vaste gamme de tâches d'apprentissage automatique, y compris la classification d'images et la traduction automatique. Ces architectures sont assemblées pour résoudre des tâches d'apprentissage automatique de bout en bout. Afin d'atteindre des performances de haut niveau, ces architectures nécessitent souvent d'un très grand nombre de paramètres. Les conséquences indésirables sont multiples, et pour y remédier, il est souhaitable de pouvoir comprendre ce qui se passe à l'intérieur des architectures d'apprentissage profond. Il est difficile de le faire en raison de: i) la dimension élevée des représentations ; et ii) la stochasticité du processus de formation. Dans cette thèse, nous étudions ces architectures en introduisant un formalisme à base de graphes, s'appuyant notamment sur les récents progrès du traitement de signaux sur graphe (TSG). À savoir, nous utilisons des graphes pour représenter les espaces latents des réseaux neuronaux profonds. Nous montrons que ce formalisme des graphes nous permet de répondre à diverses questions, notamment: i) mesurer des capacités de généralisation ;ii) réduire la quantité de des choix arbitraires dans la conception du processus d'apprentissage ; iii)améliorer la robustesse aux petites perturbations ajoutées sur les entrées ; et iv) réduire la complexité des calculs<br>In recent years, Deep Learning methods have achieved state of the art performance in a vast range of machine learning tasks, including image classification and multilingual automatic text translation. These architectures are trained to solve machine learning tasks in an end-to-end fashion. In order to reach top-tier performance, these architectures often require a very large number of trainable parameters. There are multiple undesirable consequences, and in order to tackle these issues, it is desired to be able to open the black boxes of deep learning architectures. Problematically, doing so is difficult due to the high dimensionality of representations and the stochasticity of the training process. In this thesis, we investigate these architectures by introducing a graph formalism based on the recent advances in Graph Signal Processing (GSP). Namely, we use graphs to represent the latent spaces of deep neural networks. We showcase that this graph formalism allows us to answer various questions including: ensuring generalization abilities, reducing the amount of arbitrary choices in the design of the learning process, improving robustness to small perturbations added to the inputs, and reducing computational complexity
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ghiasnezhad, Omran Pouya. "Rule Learning in Knowledge Graphs." Thesis, Griffith University, 2018. http://hdl.handle.net/10072/382680.

Texto completo
Resumen
With recent advancements in knowledge extraction and knowledge management systems, an enormous number of knowledge bases have been constructed, such as YAGO, and Wikidata. These automatically built knowledge bases which contain millions of entities and their relations have been stored in graph-based schemas, and thus are usually referred to as knowledge graphs (KGs). Since KGs have been built based on the limited available data, they are far from complete. However, learning frequent patterns in the form of logical rules from these incomplete KGs has two main advantages. First, by applying the learned rules, we can infer new facts, so we could complete the KGs. Second, the rules are stand-alone knowledge which express valuable insight about the data. However, learning rules from KGs in relation to the real-world scenarios imposes several challenges. First, due to the vast size of real-world KGs, developing a rule learning method is challenging. In fact, existing methods are not scalable for learning rst order rules, while various optimisation strategies are used such as sampling and language bias (i.e., restrictions on the form of rules). Second, applying the learned rules to the vast KG and inferring new facts is another di cult issue. Learned rules usually contain a lot of noises and adding new facts can cause inconsistency of KGs. Third, it is useful but non-trivial to extend an existing method of rule learning to the case of stream KGs. Forth, in many data repositories, the facts are augmented with time stamps. In this case, we face a stream of data (KGs). Considering time as a new dimension of data imposes some challenges to the rule learning process. It would be useful to construct a time-sensitive model from the stream of data and apply the obtained model to stream KGs. Last, the density of information in a KG is varied. Although the size of a KG is vast, it contains a limited amount of information for some relations. Consequently, that part of KG is sparse. Learning a set of accurate and informative rules regarding the sparse part of a KG is challenging due to the lack of su cient training data. In this thesis, we investigate these research problems and present our methods for rule learning in various scenarios. We have rst developed a new approach, named Rule Learning via Learning Representation (RLvLR), to learning rules from KGs by using the technique of embedding in representation learning together with a new sampling method. RLvLR learns rst-order rules from vast KGs by exploring the embedding space. It can handle some large KGs that cannot be handled by existing rule learners e ciently, due to a novel sampling method. To improve the performance of RLvLR for handling sparse data, we propose a transfer learning method, Transfer Rule Learner (TRL), for rule learning. Based on a similarity characterised by the embedding representation, our method is able to select most relevant KGs and rules to transfer from a pool of KGs whose rules have been obtained. We have also adapted RLvLR to handle stream KGs instead of static KGs. Then a system called StreamLearner is developed for learning rules from stream KGs. These proposed methods can only learn so-called closed path rules, which is a proper subset of Horn rules. Thus, we have also developed a transfer rule learner (T-LPAD) that learns the structure of logic program with annotated disjunctions. T-LPAD is created by employing transfer learning to explore the space of rules' structures more e ciently. Various experiments have been conducted to test and validate the proposed methods. Our experimental results show that our methods outperform state-of-the-art methods in many ways.<br>Thesis (PhD Doctorate)<br>Doctor of Philosophy (PhD)<br>School of Info & Comm Tech<br>Science, Environment, Engineering and Technology<br>Full Text
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Fan, Shuangfei. "Deep Representation Learning on Labeled Graphs." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96596.

Texto completo
Resumen
We introduce recurrent collective classification (RCC), a variant of ICA analogous to recurrent neural network prediction. RCC accommodates any differentiable local classifier and relational feature functions. We provide gradient-based strategies for optimizing over model parameters to more directly minimize the loss function. In our experiments, this direct loss minimization translates to improved accuracy and robustness on real network data. We demonstrate the robustness of RCC in settings where local classification is very noisy, settings that are particularly challenging for ICA. As a new way to train generative models, generative adversarial networks (GANs) have achieved considerable success in image generation, and this framework has also recently been applied to data with graph structures. We identify the drawbacks of existing deep frameworks for generating graphs, and we propose labeled-graph generative adversarial networks (LGGAN) to train deep generative models for graph-structured data with node labels. We test the approach on various types of graph datasets, such as collections of citation networks and protein graphs. Experiment results show that our model can generate diverse labeled graphs that match the structural characteristics of the training data and outperforms all baselines in terms of quality, generality, and scalability. To further evaluate the quality of the generated graphs, we apply it to a downstream task for graph classification, and the results show that LGGAN can better capture the important aspects of the graph structure.<br>Doctor of Philosophy<br>Graphs are one of the most important and powerful data structures for conveying the complex and correlated information among data points. In this research, we aim to provide more robust and accurate models for some graph specific tasks, such as collective classification and graph generation, by designing deep learning models to learn better task-specific representations for graphs. First, we studied the collective classification problem in graphs and proposed recurrent collective classification, a variant of the iterative classification algorithm that is more robust to situations where predictions are noisy or inaccurate. Then we studied the problem of graph generation using deep generative models. We first proposed a deep generative model using the GAN framework that generates labeled graphs. Then in order to support more applications and also get more control over the generated graphs, we extended the problem of graph generation to conditional graph generation which can then be applied to various applications for modeling graph evolution and transformation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Rommedahl, David, and Martin Lindström. "Learning Sparse Graphs for Data Prediction." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295623.

Texto completo
Resumen
Graph structures can often be used to describecomplex data sets. In many applications, the graph structureis not known but must be inferred from data. Furthermore, realworld data is often naturally described by sparse graphs. Inthis project, we have aimed at recreating the results describedin previous work, namely to learn a graph that can be usedfor prediction using an ℓ1-penalised LASSO approach. We alsopropose different methods for learning and evaluating the graph. We have evaluated the methods on synthetic data and real-worldSwedish temperature data. The results show that we are unableto recreate the results of the previous research team, but wemanage to learn sparse graphs that could be used for prediction. Further work is needed to verify our results.<br>Grafstrukturer kan ofta användas för att beskriva komplex data. I många tillämpningar är grafstrukturen inte känd, utan måste läras från data. Vidare beskrivs verklig data ofta naturligt av glesa grafer. I detta projekt har vi försökt återskapa resultaten från ett tidigare forskningsarbete, nämligen att lära en graf som kan användas för prediktion med en ℓ1pennaliserad LASSO-metod. Vi föreslår även andra metoder för inlärning och utvärdering av grafen. Vi har testat metoderna  på syntetisk data och verklig temperaturdata från Sverige.  Resultaten visar att vi inte kan återskapa de tidigare forskarnas resultat, men vi lyckas lära in glesa grafer som kan användas för prediktion. Ytterligare arbete krävs för att verifiera våra resultat.<br>Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Xu, Keyulu. "Graph structures, random walks, and all that : learning graphs with jumping knowledge networks." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/121660.

Texto completo
Resumen
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.<br>Thesis: S.M., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2019<br>Cataloged from student-submitted PDF version of thesis.<br>Includes bibliographical references (pages 51-54).<br>Graph representation learning aims to extract high-level features from the graph structures and node features, in order to make predictions about the nodes and the graphs. Applications include predicting chemical properties of drugs, community detection in social networks, and modeling interactions in physical systems. Recent deep learning approaches for graph representation learning, namely Graph Neural Networks (GNNs), follow a neighborhood aggregation procedure, where the representation vector of a node is computed by recursively aggregating and transforming feature vectors of its neighboring nodes. We analyze some important properties of these models, and propose a strategy to overcome the limitations. In particular, the range of neighboring nodes that a node's representation draws from strongly depends on the graph structure, analogous to the spread of a random walk. To adapt to local neighborhood properties and tasks, we explore an architecture - jumping knowledge (JK) networks that flexibly leverages, for each node, different neighborhood ranges to enable better structure-aware representation. In a number of experiments on social, bioinformatics and citation networks, we demonstrate that our model achieves state-of-the-art performance. Furthermore, combining the JK framework with models like Graph Convolutional Networks, GraphSAGE and Graph Attention Networks consistently improves those models' performance.<br>by Keyulu Xu.<br>S.M.<br>S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Freeman, Guy. "Learning and predicting with chain event graphs." Thesis, University of Warwick, 2010. http://wrap.warwick.ac.uk/4529/.

Texto completo
Resumen
Graphical models provide a very promising avenue for making sense of large, complex datasets. The most popular graphical models in use at the moment are Bayesian networks (BNs). This thesis shows, however, they are not always ideal factorisations of a system. Instead, I advocate for the use of a relatively new graphical model, the chain event graph (CEG), that is based on event trees. Event trees directly represent graphically the event space of a system. Chain event graphs reduce their potentially huge dimensionality by taking into account identical probability distributions on some of the event tree’s subtrees, with the added benefits of showing the conditional independence relationships of the system — one of the advantages of the Bayesian network representation that event trees lack — and implementation of causal hypotheses that is just as easy, and arguably more natural, than is the case with Bayesian networks, with a larger domain of implementation using purely graphical means. The trade-off for this greater expressive power, however, is that model specification and selection are much more difficult to undertake with the larger set of possible models for a given set of variables. My thesis is the first exposition of how to learn CEGs. I demonstrate that not only is conjugate (and hence quick) learning of CEGs possible, but I characterise priors that imply conjugate updating based on very reasonable assumptions that also have direct Bayesian network analogues. By re-casting CEGs as partition models, I show how established partition learning algorithms can be adapted for the task of learning CEGs. I then develop a robust yet flexible prediction machine based on CEGs for any discrete multivariate time series — the dynamic CEG model — which combines the power of CEGs, multi-process and steady modelling, lattice theory and Occam’s razor. This is also an exact method that produces reliable predictions without requiring much a priori modelling. I then demonstrate how easily causal analysis can be implemented with this model class that can express a wide variety of causal hypotheses. I end with an application of these techniques to real educational data, drawing inferences that would not have been possible simply using BNs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Pasteris, S. U. "Efficient algorithms for online learning over graphs." Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1516210/.

Texto completo
Resumen
In this thesis we consider the problem of online learning with labelled graphs, in particular designing algorithms that can perform this problem quickly and with low memory requirements. We consider the tasks of Classification (in which we are asked to predict the labels of vertices) and Similarity Prediction (in which we are asked to predict whether two given vertices have the same label). The first half of the thesis considers non- probabilistic online learning, where there is no probability distribution on the labelling and we bound the number of mistakes of an algorithm by a function of the labelling's complexity (i.e. its "naturalness"), often the cut- size. The second half of the thesis considers probabilistic machine learning in which we have a known probability distribution on the labelling. Before considering probabilistic online learning we first analyse the junction tree algorithm, on which we base our online algorithms, and design a new ver- sion of it, superior to the otherwise current state of the art. Explicitly, the novel contributions of this thesis are as follows: • A new algorithm for online prediction of the labelling of a graph which has better performance than previous algorithms on certain graph and labelling families. • Two algorithms for online similarity prediction on a graph (a novel problem solved in this thesis). One performs very well whilst the other not so well but which runs exponentially faster. • A new (better than before, in terms of time and space complexity) state of the art junction tree algorithm, as well as an application of it to the problem of online learning in an Ising model. • An algorithm that, in linear time, finds the optimal junction tree for online inference in tree-structured Ising models, the resulting online junction tree algorithm being far superior to the previous state of the art. All claims in this thesis are supported by mathematical proofs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía