Literatura académica sobre el tema "Learning dynamical systems"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Learning dynamical systems".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Learning dynamical systems"
Hein, Helle y Ulo Lepik. "LEARNING TRAJECTORIES OF DYNAMICAL SYSTEMS". Mathematical Modelling and Analysis 17, n.º 4 (1 de septiembre de 2012): 519–31. http://dx.doi.org/10.3846/13926292.2012.706654.
Texto completoKhadivar, Farshad, Ilaria Lauzana y Aude Billard. "Learning dynamical systems with bifurcations". Robotics and Autonomous Systems 136 (febrero de 2021): 103700. http://dx.doi.org/10.1016/j.robot.2020.103700.
Texto completoBerry, Tyrus y Suddhasattwa Das. "Learning Theory for Dynamical Systems". SIAM Journal on Applied Dynamical Systems 22, n.º 3 (8 de agosto de 2023): 2082–122. http://dx.doi.org/10.1137/22m1516865.
Texto completoRoy, Sayan y Debanjan Rana. "Machine Learning in Nonlinear Dynamical Systems". Resonance 26, n.º 7 (julio de 2021): 953–70. http://dx.doi.org/10.1007/s12045-021-1194-0.
Texto completoWANG, CONG, TIANRUI CHEN, GUANRONG CHEN y DAVID J. HILL. "DETERMINISTIC LEARNING OF NONLINEAR DYNAMICAL SYSTEMS". International Journal of Bifurcation and Chaos 19, n.º 04 (abril de 2009): 1307–28. http://dx.doi.org/10.1142/s0218127409023640.
Texto completoAhmadi, Amir Ali y Bachir El Khadir. "Learning Dynamical Systems with Side Information". SIAM Review 65, n.º 1 (febrero de 2023): 183–223. http://dx.doi.org/10.1137/20m1388644.
Texto completoGrigoryeva, Lyudmila, Allen Hart y Juan-Pablo Ortega. "Learning strange attractors with reservoir systems". Nonlinearity 36, n.º 9 (27 de julio de 2023): 4674–708. http://dx.doi.org/10.1088/1361-6544/ace492.
Texto completoDavids, Keith. "Learning design for Nonlinear Dynamical Movement Systems". Open Sports Sciences Journal 5, n.º 1 (13 de septiembre de 2012): 9–16. http://dx.doi.org/10.2174/1875399x01205010009.
Texto completoCampi, M. C. y P. R. Kumar. "Learning dynamical systems in a stationary environment". Systems & Control Letters 34, n.º 3 (junio de 1998): 125–32. http://dx.doi.org/10.1016/s0167-6911(98)00005-x.
Texto completoRajendra, P. y V. Brahmajirao. "Modeling of dynamical systems through deep learning". Biophysical Reviews 12, n.º 6 (22 de noviembre de 2020): 1311–20. http://dx.doi.org/10.1007/s12551-020-00776-4.
Texto completoTesis sobre el tema "Learning dynamical systems"
Preen, Richard John. "Dynamical genetic programming in learning classifier systems". Thesis, University of the West of England, Bristol, 2011. http://eprints.uwe.ac.uk/25852/.
Texto completoFerizbegovic, Mina. "Robust learning and control of linear dynamical systems". Licentiate thesis, KTH, Reglerteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280121.
Texto completoQC 20200904
Mazzoleni, Mirko (ORCID:0000-0002-7116-135X). "Learning meets control. Data analytics for dynamical systems". Doctoral thesis, Università degli studi di Bergamo, 2018. http://hdl.handle.net/10446/104812.
Texto completoIzquierdo, Eduardo J. "The dynamics of learning behaviour : a situated, embodied, and dynamical systems approach". Thesis, University of Sussex, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.488595.
Texto completoMussmann, Thomas Frederick. "Data Driven Learning of Dynamical Systems Using Neural Networks". The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1618589877977348.
Texto completoLindsten, Fredrik. "Particle filters and Markov chains for learning of dynamical systems". Doctoral thesis, Linköpings universitet, Reglerteknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-97692.
Texto completoCNDM
CADICS
Mao, Weize. "DATA-DRIVEN LEARNING OF UNKNOWN DYNAMICAL SYSTEMS WITH MISSING INFORMATION". The Ohio State University, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=osu1619097149112362.
Texto completoPassey, Jr David Joseph. "Growing Complex Networks for Better Learning of Chaotic Dynamical Systems". BYU ScholarsArchive, 2020. https://scholarsarchive.byu.edu/etd/8146.
Texto completoBézenac, Emmanuel de. "Modeling physical processes with deep learning : a dynamical systems approach". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS203.
Texto completoDeep Learning has emerged as a predominant tool for AI, and has already abundant applications in fields where data is abundant and access to prior knowledge is difficult. This is not necessarily the case for natural sciences, and in particular, for physical processes. Indeed, these have been the object of study since centuries, a vast amount of knowledge has been acquired, and elaborate algorithms and methods have been developped. Thus, this thesis has two main objectives. The first considers the study of the role that deep learning has to play in this vast ecosystem of knowledge, theory and tools. We will attempt to answer this general question through a concrete problem: the one of modelling complex physical processes, leveraging deep learning methods in order to make up for lacking prior knowledge. The second objective is somewhat its converse: it focuses on how perspectives, insights and tools from the field of study of physical processes and dynamical systems can be applied in the context of deep learning, in order to gain a better understanding and develop novel algorithms
Appeltant, Lennert. "Reservoir computing based on delay-dynamical systems". Doctoral thesis, Universitat de les Illes Balears, 2012. http://hdl.handle.net/10803/84144.
Texto completoLibros sobre el tema "Learning dynamical systems"
P, Spencer John, Thomas Michael S. C y McClelland James L, eds. Toward a unified theory of development: Connectionism and dynamic systems theory re-considered. Oxford: Oxford University Press, 2009.
Buscar texto completoRussell, David W. The BOXES Methodology: Black Box Dynamic Control. London: Springer London, 2012.
Buscar texto completoHaridimos, Tsoukas y Mylonopoulos Nikolaos 1970-, eds. Organizations as knowledge systems: Knowledge, learning, and dynamic capabilities. New York: Palgrave Macmillan, 2004.
Buscar texto completoservice), SpringerLink (Online, ed. Self-Evolvable Systems: Machine Learning in Social Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Buscar texto completoGroup model building: Facilitating team learning using system dynamics. Chichester: J. Wiley, 1996.
Buscar texto completoAldo, Romano y SpringerLink (Online service), eds. Dynamic Learning Networks: Models and Cases in Action. Boston, MA: Springer-Verlag US, 2009.
Buscar texto completoHiroyuki, Itami. Dynamics of Knowledge, Corporate Systems and Innovation. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.
Buscar texto completoReinforcement learning and dynamic programming using function approximators. Boca Raton: CRC Press, 2010.
Buscar texto completoSandrock, Jörg. System dynamics in der strategischen Planung: Zur Gestaltung von Geschäftsmodellen im E-Learning. Wiesbaden: Dt. Univ.-Verl., 2006.
Buscar texto completoIEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning (1st 2007 Honolulu, Hawaii). 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning: Honolulu, HI, 1-5 April 2007. Piscataway, NJ: IEEE, 2007.
Buscar texto completoCapítulos de libros sobre el tema "Learning dynamical systems"
Andonov, Sasho. "Non-linear Dynamical Systems". En Learning and Relearning Equipment Complexity, 121–61. Boca Raton: CRC Press, 2023. http://dx.doi.org/10.1201/9781003404811-9.
Texto completoTanaka, Akinori, Akio Tomiya y Koji Hashimoto. "Dynamical Systems and Neural Networks". En Deep Learning and Physics, 147–55. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6108-9_9.
Texto completoGolden, Richard M. "Convergence of Time-Invariant Dynamical Systems". En Statistical Machine Learning, 169–86. First edition. j Boca Raton, FL : CRC Press, 2020. j Includes bibliographical references and index.: Chapman and Hall/CRC, 2020. http://dx.doi.org/10.1201/9781351051507-6.
Texto completoGros, Claudius. "Complexity of Machine Learning". En Complex and Adaptive Dynamical Systems, 361–92. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-55076-8_10.
Texto completoBhat, Harish S. y Shagun Rawat. "Learning Stochastic Dynamical Systems via Bridge Sampling". En Advanced Analytics and Learning on Temporal Data, 183–98. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39098-3_14.
Texto completoGaucel, Sébastien, Maarten Keijzer, Evelyne Lutton y Alberto Tonda. "Learning Dynamical Systems Using Standard Symbolic Regression". En Lecture Notes in Computer Science, 25–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-44303-3_3.
Texto completoVidyasagar, M. "Learning, System IdentificationSystem identification , and Complexity". En Mathematics of Complexity and Dynamical Systems, 924–36. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1806-1_55.
Texto completoStamovlasis, Dimitrios. "Catastrophe Theory: Methodology, Epistemology, and Applications in Learning Science". En Complex Dynamical Systems in Education, 141–75. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27577-2_9.
Texto completoLagos, Guido y Pablo Romero. "On the Reliability of Dynamical Stochastic Binary Systems". En Machine Learning, Optimization, and Data Science, 516–27. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64583-0_46.
Texto completoLiu, Xuanwu, Zhao Li, Yuanhui Mao, Lixiang Lai, Ben Gao, Yao Deng y Guoxian Yu. "Dynamical User Intention Prediction via Multi-modal Learning". En Database Systems for Advanced Applications, 519–35. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59410-7_35.
Texto completoActas de conferencias sobre el tema "Learning dynamical systems"
Sommer, Nicolas, Klas Kronander y Aude Billard. "Learning externally modulated dynamical systems". En 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017. http://dx.doi.org/10.1109/iros.2017.8206248.
Texto completoHudson, Joshua, Khachik Sargsyan, Marta D'Elia y Habib Najm. "Analysis of Neural Networks as Dynamical Systems." En Proposed for presentation at the Sandia Machine Learning and Deep Learning Workshop in ,. US DOE, 2021. http://dx.doi.org/10.2172/1883507.
Texto completoLiu, G. P. "Neural-learning control of nonlinear dynamical systems". En IEE Seminar Learning Systems for Control. IEE, 2000. http://dx.doi.org/10.1049/ic:20000346.
Texto completoArimoto, S., S. Kawamura, F. Miyazaki y S. Tamaki. "Learning control theory for dynamical systems". En 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268737.
Texto completoKrause, Andre Frank, Volker Durr, Thomas Schack y Holk Cruse. "Input compensation learning: Modelling dynamical systems". En 2011 Seventh International Conference on Natural Computation (ICNC). IEEE, 2011. http://dx.doi.org/10.1109/icnc.2011.6022106.
Texto completoCong Wang, D. J. Hill y Guanrong Chen. "Deterministic learning of nonlinear dynamical systems". En Proceedings of the 2003 IEEE International Symposium on Intelligent Control. IEEE, 2003. http://dx.doi.org/10.1109/isic.2003.1253919.
Texto completoLiu, Ren-Huiliu y Xue-Feng Lv. "Control for Switched Systems using Output Dynamical Compensator". En Sixth International Conference on Machine Learning Cybernetics. IEEE, 2007. http://dx.doi.org/10.1109/icmlc.2007.4370215.
Texto completoQuintanilla, Rafael y John T. Wen. "Iterative learning control for nonsmooth dynamical systems". En 2007 46th IEEE Conference on Decision and Control. IEEE, 2007. http://dx.doi.org/10.1109/cdc.2007.4434885.
Texto completoHuang, Tzu-Kuo y Jeff Schneider. "Learning linear dynamical systems without sequence information". En the 26th Annual International Conference. New York, New York, USA: ACM Press, 2009. http://dx.doi.org/10.1145/1553374.1553430.
Texto completoSaveriano, Matteo y Dongheui Lee. "Incremental Skill Learning of Stable Dynamical Systems". En 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018. http://dx.doi.org/10.1109/iros.2018.8594474.
Texto completoInformes sobre el tema "Learning dynamical systems"
Siddiqi, Sajid M., Byron Boots y Geoffrey J. Gordon. A Constraint Generation Approach to Learning Stable Linear Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, enero de 2008. http://dx.doi.org/10.21236/ada480921.
Texto completoRupe, Adam. Learning Implicit Models of Complex Dynamical Systems From Partial Observations. Office of Scientific and Technical Information (OSTI), julio de 2021. http://dx.doi.org/10.2172/1808822.
Texto completoKaffenberger, Michelle y Marla Spivack. System Coherence for Learning: Applications of the RISE Education Systems Framework. Research on Improving Systems of Education (RISE), enero de 2022. http://dx.doi.org/10.35489/bsg-risewp_2022/086.
Texto completoJiang, Zhong-Ping. Cognitive Models for Learning to Control Dynamic Systems. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2008. http://dx.doi.org/10.21236/ada487160.
Texto completoKaffenberger, Michelle, Jason Silberstein y Marla Spivack. Evaluating Systems: Three Approaches for Analyzing Education Systems and Informing Action. Research on Improving Systems of Education (RISE), abril de 2022. http://dx.doi.org/10.35489/bsg-rise-wp_2022/093.
Texto completoDeppe, Sahar. AI-based reccomendation system for industrial training. Kompetenzzentrum Arbeitswelt.Plus, diciembre de 2023. http://dx.doi.org/10.55594/vmtx7119.
Texto completoRoss-Larson, Bruce. Why Students Aren’t Learning What They Need for a Productive Life. Research on Improving Systems of Education (RISE), marzo de 2023. http://dx.doi.org/10.35489/bsg-rise-2023/pe13.
Texto completoWilinski, Mateusz. Learning of the full dynamic system state matrix from partial PMU observations. Office of Scientific and Technical Information (OSTI), marzo de 2022. http://dx.doi.org/10.2172/1853893.
Texto completoYuan, Yuxuan, Zhaoyu Wang, Ian Dobson, Venkataramana Ajjarapu, Jie Chen y Neeraj Nayak. Robust Learning of Dynamic Interactions for Enhancing Power System Resilience Final Scientific Report. Office of Scientific and Technical Information (OSTI), marzo de 2022. http://dx.doi.org/10.2172/1878168.
Texto completoOsypova, Nataliia V. y Volodimir I. Tatochenko. Improving the learning environment for future mathematics teachers with the use application of the dynamic mathematics system GeoGebra AR. [б. в.], julio de 2021. http://dx.doi.org/10.31812/123456789/4628.
Texto completo