Literatura académica sobre el tema "Lean burn combustor"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Lean burn combustor".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Lean burn combustor"
Straub, Douglas L., Kent H. Casleton, Robie E. Lewis, Todd G. Sidwell, Daniel J. Maloney y George A. Richards. "Assessment of Rich-Burn, Quick-Mix, Lean-Burn Trapped Vortex Combustor for Stationary Gas Turbines". Journal of Engineering for Gas Turbines and Power 127, n.º 1 (1 de enero de 2005): 36–41. http://dx.doi.org/10.1115/1.1789152.
Texto completoMicklow, G. J., S. Roychoudhury, H. L. Nguyen y M. C. Cline. "Emissions Reduction by Varying the Swirler Airflow Split in Advanced Gas Turbine Combustors". Journal of Engineering for Gas Turbines and Power 115, n.º 3 (1 de julio de 1993): 563–69. http://dx.doi.org/10.1115/1.2906744.
Texto completoDi Sarli, Valeria. "Stability and Emissions of a Lean Pre-Mixed Combustor with Rich Catalytic/Lean-burn Pilot". International Journal of Chemical Reactor Engineering 12, n.º 1 (1 de enero de 2014): 77–89. http://dx.doi.org/10.1515/ijcre-2013-0112.
Texto completoHendricks, R. C., D. T. Shouse, W. M. Roquemore, D. L. Burrus, B. S. Duncan, R. C. Ryder, A. Brankovic, N. S. Liu, J. R. Gallagher y J. A. Hendricks. "Experimental and Computational Study of Trapped Vortex Combustor Sector Rig with High-Speed Diffuser Flow". International Journal of Rotating Machinery 7, n.º 6 (2001): 375–85. http://dx.doi.org/10.1155/s1023621x0100032x.
Texto completoSerbin, Serhiy y Nataliia Goncharova. "Investigations of a Gas Turbine Low-Emission Combustor Operating on the Synthesis Gas". International Journal of Chemical Engineering 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/6146984.
Texto completoLi, J., X. Sun, Y. Liu y V. Sethi. "Preliminary aerodynamic design methodology for aero engine lean direct injection combustors". Aeronautical Journal 121, n.º 1242 (21 de junio de 2017): 1087–108. http://dx.doi.org/10.1017/aer.2017.47.
Texto completoTalpallikar, M. V., C. E. Smith, M. C. Lai y J. D. Holdeman. "CFD Analysis of Jet Mixing in Low NOx Flametube Combustors". Journal of Engineering for Gas Turbines and Power 114, n.º 2 (1 de abril de 1992): 416–24. http://dx.doi.org/10.1115/1.2906607.
Texto completoGarland, R. V. y P. W. Pillsbury. "Status of Topping Combustor Development for Second-Generation Fluidized Bed Combined Cycles". Journal of Engineering for Gas Turbines and Power 114, n.º 1 (1 de enero de 1992): 126–31. http://dx.doi.org/10.1115/1.2906294.
Texto completoBlomeyer, M., B. Krautkremer, D. K. Hennecke y T. Doerr. "Mixing Zone Optimization of a Rich-Burn/Quick-Mix/Lean-Burn Combustor". Journal of Propulsion and Power 15, n.º 2 (marzo de 1999): 288–95. http://dx.doi.org/10.2514/2.5425.
Texto completoMcGuirk, J. J. "The aerodynamic challenges of aeroengine gas-turbine combustion systems". Aeronautical Journal 118, n.º 1204 (junio de 2014): 557–99. http://dx.doi.org/10.1017/s0001924000009386.
Texto completoTesis sobre el tema "Lean burn combustor"
Wankhede, Moresh J. "Multi-fidelity strategies for lean burn combustor design". Thesis, University of Southampton, 2012. https://eprints.soton.ac.uk/210785/.
Texto completoPeacock, Graham. "Enhanced cold-side cooling techniques for lean burn combustor liners". Thesis, Loughborough University, 2013. https://dspace.lboro.ac.uk/2134/12329.
Texto completoHull, David Richard. "Combustion technology in the lean-burn spark-ignition engines". Thesis, Imperial College London, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.244514.
Texto completoPashley, Nicholas C. "Ignition systems for lean burn gas engines". Thesis, University of Oxford, 1997. http://ora.ox.ac.uk/objects/uuid:b5fcf2d4-b27b-4b3b-a593-ee307ec80f3a.
Texto completoGoldwitz, Joshua A. (Joshua Arlen) 1980. "Combustion optimization in a hydrogen-enhanced lean burn SI engine". Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/27061.
Texto completoIncludes bibliographical references (p. 95-97).
Lean operation of spark ignition (SI) automotive engines offers attractive performance incentives. Lowered combustion temperatures inhibit NO[sub]x pollutant formation while reduced manifold throttling minimizes pumping losses, leading to higher efficiency. These benefits are offset by the reduced combustion speed of lean mixtures, which can lead to high cycle-to-cycle variation and unacceptable engine behavior characteristics. Hydrogen-enhancement can suppress the undesirable consequences of lean operation by accelerating the combustion process, thereby extending the "lean limit." Hydrogen can be produced onboard the vehicle with a plasmatron fuel reformer device. Combustion optimization experiments focused on three key areas: the ignition system, charge motion in the inlet ports, and mixture preparation. The ignition system tests compared a standard inductive coil scheme against high-energy discharge systems. Charge motion experiments focused on the impact of turbulence patterns generated by conventional restrictor plates as well as novel inlet flow modification cones. The turbulent motion of each configuration was characterized using swirl and tumble flow benches. Mixture preparation tests compared a standard single-hole pintle injector against a fine atomizing 12-hole injector. Lastly, a further series of trials was also run to investigate the impact of high exhaust gas recirculation (EGR) dilution rates on combustion stability. Results indicate that optimizations of the combustion system in conjunction with hydrogen-enhancement can extend the lean limit of operation by roughly 25% compared against the baseline configuration. Nearly half of this improvement may be attributed to improvements in the combustion system.
(cont.) An inductive ignition system in conjunction with a high tumble-motion inlet configuration leads to the highest levels of combustion performance. Furthermore, hydrogen enhancement affects a nearly constant absolute improvement in the lean misfire limit regardless of baseline combustion behavior. Conversely, the amount of improvement in the point of peak engine NIMEP output is inversely related to the level of baseline performance.
by Joshua A. Goldwitz.
S.M.
Yates, D. A. "Hydrocarbon sampling from the combustion chamber of a lean burn engine". Thesis, Coventry University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374271.
Texto completoHickman, David Gary. "A study of lean burn combustion in a spark ignition engine". Thesis, University of Newcastle Upon Tyne, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388654.
Texto completoGidney, Jeremy. "The performance stability of a homogeneous charge lean-burn spark-ignition engine". Thesis, University of Liverpool, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303644.
Texto completoLake, Timothy Hugh. "Gasoline combustion systems for improved fuel economy and emissions". Thesis, University of Brighton, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302289.
Texto completoNorum, Viggo Lauritz. "Analysis of Ignition and Combustion in Otto Lean-Burn Engines with Prechambers". Doctoral thesis, Norwegian University of Science and Technology, Department of Marine Technology, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-2185.
Texto completoOtto-engines in which the combustion chamber has richer fuel/air mix close to the ignition source and leaner charge further away from the ignition source are often called "stratified charge engines". Stratified charge can be used to increase the combustion speed in an internal combustion engine and thereby enable the engine to run on a fuel/air mix that would normally burn too slowly or not burn at all. The use of prechambers is one way to obtain stratified charge.
This thesis presents and uses methods for studying a prechamber more or less indepently from the rest of the engine.
When the prechamber is studied like an engine of itself, then the output of the "engine" is not mechanical power, but rather one or more hot jets into the main chamber. "Prechamber efficiencies" can be defined based on how much of the initial chemical energy is delivered as kinetic or thermal energy into the main chamber. Models of other important characteristics including the jet length and duration are also presented and used.
Libros sobre el tema "Lean burn combustor"
Institution of Mechanical Engineers (Great Britain). Combustion Engines Group., ed. Lean burn combustion engines: 3-4 December 1996. Bury St. Edmunds: Published by Mechanical Engineering Publications Limited for the Institution of Mechanical Engineers, 1996.
Buscar texto completoLean Burn Combustion Engines (IMechE Seminar Publications). Society of Automotive Engineers Inc, 1997.
Buscar texto completoEvans, R. L. Combustion chamber design for a Lean-Burn SI engine. Society of Automotive Engineers., 1992.
Buscar texto completoBeyerlein, Steven W. Catalytic charge activation in a lean-burn internal combustion engine. 1987.
Buscar texto completoAhmadi-Befrui, B. Calculation of inhomogeneous-charge combustion in a swirl-assisted Lean-Burn engine. Society of Automotive Engineers, 1991.
Buscar texto completoCapítulos de libros sobre el tema "Lean burn combustor"
Luszcz, Pawel, K. Takeuchi, P. Pfeilmaier, M. Gerhardt, P. Adomeit, A. Brunn, C. Kupiek y B. Franzke. "Homogeneous lean burn engine combustion system development – Concept study". En Proceedings, 205–23. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-21194-3_19.
Texto completoKalwar, Ankur y Avinash Kumar Agarwal. "Lean-Burn Combustion in Direct-Injection Spark-Ignition Engines". En Energy, Environment, and Sustainability, 281–317. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1513-9_12.
Texto completoSuzuki, Takanori, Bastian Lehrheuer, Tamara Ottenwälder, Max Mally y Stefan Pischinger. "Combustion stability improvement with turbulence control by air injection for a lean-burn SI engine". En Proceedings, 214–28. Wiesbaden: Springer Fachmedien Wiesbaden, 2019. http://dx.doi.org/10.1007/978-3-658-25939-6_19.
Texto completoRapp, V., N. Killingsworth, P. Therkelsen y R. Evans. "Lean-Burn Internal Combustion Engines". En Lean Combustion, 111–46. Elsevier, 2016. http://dx.doi.org/10.1016/b978-0-12-804557-2.00004-3.
Texto completoEvans, Robert L. "Lean-Burn Spark-Ignited Internal Combustion Engines". En Lean Combustion, 95–120. Elsevier, 2008. http://dx.doi.org/10.1016/b978-012370619-5.50005-4.
Texto completoCouto, Luíza Camargos, Maria Clara Martins Avelar, Vitória Bernardes y Lamara Laguardia Valente Rocha. "Inhalation of Toxic Gases in the Kiss Nightclub Disaster: an Example of Inhalation Injury from Indoor Fires". En COLLECTION OF INTERNATIONAL TOPICS IN HEALTH SCIENCE- V1. Seven Editora, 2023. http://dx.doi.org/10.56238/colleinternhealthscienv1-003.
Texto completoMcElroy, Michael B. "Natural Gas : The Least Polluting Of The Fossil Fuels". En Energy and Climate. Oxford University Press, 2016. http://dx.doi.org/10.1093/oso/9780190490331.003.0012.
Texto completoActas de conferencias sobre el tema "Lean burn combustor"
Bertini, D., L. Mazzei, A. Andreini y B. Facchini. "Multiphysics Numerical Investigation of an Aeronautical Lean Burn Combustor". En ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91437.
Texto completoWey, Changju T. "Lean Blowout (LBO) Simulations in a Rich-Burn Quick-Quench Lean-Burn (RQL) Gas Turbine Combustor". En AIAA Propulsion and Energy 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-3694.
Texto completoAndreini, Antonio, Riccardo Becchi, Bruno Facchini, Lorenzo Mazzei, Alessio Picchi y Antonio Peschiulli. "Effusion Cooling System Optimization for Modern Lean Burn Combustor". En ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-57721.
Texto completoAndreini, Antonio, Bruno Facchini, Andrea Giusti, Ignazio Vitale y Fabio Turrini. "Thermoacoustic Analysis of a Full Annular Lean Burn Aero-Engine Combustor". En ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94877.
Texto completoAndreini, A., B. Facchini, L. Mazzei, L. Bellocci y F. Turrini. "Assessment of Aero-Thermal Design Methodology for Effusion Cooled Lean Burn Annular Combustors". En ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26764.
Texto completoSoworka, T., M. Gerendas, R. L. G. M. Eggels y Epaminondas Mastorakos. "Numerical Investigation of Ignition Performance of a Lean Burn Combustor at Sub-Atmospheric Conditions". En ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-25644.
Texto completoLazik, W., Th Doerr, S. Bake, R. v. d. Bank y L. Rackwitz. "Development of Lean-Burn Low-NOx Combustion Technology at Rolls-Royce Deutschland". En ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51115.
Texto completoMicklow, Gerald J., Subir Roychoudhury, H. Lee Nguyen y Michael C. Cline. "Emissions Reduction by Varying the Swirler Airflow Split in Advanced Gas Turbine Combustors". En ASME 1992 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/92-gt-110.
Texto completoStiehl, Bernhard, Tyler Worbington, Alexander Miegel, Scott Martin, Carlos Velez y Kareem Ahmed. "Combustion and Emission Characteristics of a Lean Axial-Stage Combustor". En ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91796.
Texto completoLiu, Haoyang, Wenkai Qian, Min Zhu y Suhui Li. "Kinetics Modeling on NOx Emissions of a Syngas Turbine Combustor Using RQL Combustion Method". En ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-90826.
Texto completoInformes sobre el tema "Lean burn combustor"
Shahrokh Etemad, Lance Smith y Kevin Burns. System Study of Rich Catalytic/Lean burn (RCL) Catalytic Combustion for Natural Gas and Coal-Derived Syngas Combustion Turbines. Office of Scientific and Technical Information (OSTI), diciembre de 2004. http://dx.doi.org/10.2172/886021.
Texto completoEffect of Spark Discharge Duration and Timing on the Combustion Initiation in a Lean Burn SI Engine. SAE International, abril de 2021. http://dx.doi.org/10.4271/2021-01-0478.
Texto completo