Literatura académica sobre el tema "Leaf area estimation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Leaf area estimation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Leaf area estimation"
Fanourakis, Dimitrios, Filippos Kazakos y Panayiotis A. Nektarios. "Allometric Individual Leaf Area Estimation in Chrysanthemum". Agronomy 11, n.º 4 (18 de abril de 2021): 795. http://dx.doi.org/10.3390/agronomy11040795.
Texto completoS, THIMMEGOWDA. "ESTIMATION OF LEAF AREA IN WHEAT GENOTYPES". Madras Agricultural Journal 73, May (1986): 278–80. http://dx.doi.org/10.29321/maj.10.a02268.
Texto completoCargnelutti Filho, Alberto, Rafael Vieira Pezzini, Ismael Mario Márcio Neu y Gabriel Elias Dumke. "Estimation of buckwheat leaf area by leaf dimensions". Semina: Ciências Agrárias 42, n.º 3Supl1 (22 de abril de 2021): 1529–48. http://dx.doi.org/10.5433/1679-0359.2021v42n3supl1p1529.
Texto completoSilva, Jocélia Rosa da, Arno Bernardo Heldwein, Andressa Janaína Puhl, Adriana Almeida do Amarante, Daniella Moreira Salvadé, Cadmo João Onofre Gregory dos Santos y Mateus Leonardi. "Leaf Area Estimation in Chamomile". Journal of Agricultural Science 11, n.º 2 (15 de enero de 2019): 429. http://dx.doi.org/10.5539/jas.v11n2p429.
Texto completoDeng, Yangbo, Kunyong Yu, Xiong Yao, Qiaoya Xie, Yita Hsieh y Jian Liu. "Estimation of Pinus massoniana Leaf Area USING Terrestrial Laser Scanning". Forests 10, n.º 8 (6 de agosto de 2019): 660. http://dx.doi.org/10.3390/f10080660.
Texto completoToebe, M., P. J. Melo, R. R. Souza, A. C. Mello y F. L. Tartaglia. "Leaf area estimation in triticale by leaf dimensions". Revista Brasileira de Ciências Agrárias - Brazilian Journal of Agricultural Sciences 14, n.º 2 (30 de junio de 2019): 1–9. http://dx.doi.org/10.5039/agraria.v14i2a5656.
Texto completoK, BALAKRISHNAN, NATARAJARATNAM N y SUNDARUM K.M. "A RAPID METHOD FOR THE ESTIMATION OF LEAF AREA IN FIELD BEAN". Madras Agricultural Journal 72, November (1985): 633–35. http://dx.doi.org/10.29321/maj.10.a02415.
Texto completoMack, Laura, Filippo Capezzone, Sebastian Munz, Hans-Peter Piepho, Wilhelm Claupein, Tim Phillips y Simone Graeff-Hönninger. "Nondestructive Leaf Area Estimation for Chia". Agronomy Journal 109, n.º 5 (septiembre de 2017): 1960–69. http://dx.doi.org/10.2134/agronj2017.03.0149.
Texto completoÇi̇rak, C., M. Odabaş, A. Ayan, B. Sağlam y K. Kevseroğlu. "Estimation of leaf area in selectedHypericumspecies". Acta Botanica Hungarica 50, n.º 1-2 (marzo de 2008): 81–91. http://dx.doi.org/10.1556/abot.50.2008.1-2.5.
Texto completoJiang, Ni, Wanneng Yang, Lingfeng Duan, Guoxing Chen, Wei Fang, Lizhong Xiong y Qian Liu. "A nondestructive method for estimating the total green leaf area of individual rice plants using multi-angle color images". Journal of Innovative Optical Health Sciences 08, n.º 02 (marzo de 2015): 1550002. http://dx.doi.org/10.1142/s1793545815500029.
Texto completoTesis sobre el tema "Leaf area estimation"
Wang, Dongdong. "Improving satellite Leaf Area Index estimation based on various integration methods". College Park, Md.: University of Maryland, 2009. http://hdl.handle.net/1903/9872.
Texto completoThesis research directed by: Dept. of Geography. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Winkler, Tobias. "Empirical models for grape vine leaf area estimation on cv. Trincadeira". Master's thesis, ISA-UL, 2016. http://hdl.handle.net/10400.5/13008.
Texto completoEstimating a Vineyard’s leaf area is of great importance when evaluating the productive and quality potential of a vineyard and for characterizing the light and thermal microenvironments of grapevine plants. The aim of the present work was to validate the Lopes and Pinto method for determining vineyard leaf area in the vineyards of Lisbon’s wine growing region in Portugal, with the typical local red grape cultivar Trincadeira, and to improve prediction quality by providing cultivar specific models. The presented models are based on independent datasets of two consecutive years 2015 and 2016. Fruiting shoots were collected and analyzed during all phenological stages. Primary leaf area of shoots is estimated by models using a calculated variable obtained from the average of the largest and smallest primary leaf area multiplied by the number of primary leaves, as presented by Lopes and Pinto (2005). Lateral Leaf area additionally uses the area of the biggest lateral leaf as predictor. Models based on Shoot length and shoot diameter and number of lateral leaves were tested as less laborious alternatives. Although very fast and easy to assess, models based on shoot length and diameter were not able to predict variability of lateral leaf area sufficiently and were susceptible to canopy management. The Lopes and Pinto method is able to explain a very high proportion of variability, both in primary and lateral leaf area, independently of the phenological stage, as well as before and after trimming. They are inexpensive, universal, practical, non-destructive methods which do not require specialized staff or expensive equipment
N/A
Phinopoulos, Victoras Georgios. "Estimation of leaf area in grapevine cv. Syrah using empirical models". Master's thesis, ISA/UL, 2014. http://hdl.handle.net/10400.5/8631.
Texto completoEmpirical models for the estimation of the Area of single Primary and Lateral leaves, and total Primary and Lateral Leaf Area of a shoot, are presented for the grapevine cv. Syrah (Vitis vinifera L.). The Area of single Leaves is estimated with models using the sum of the lengths of the two lateral veins of each leaf, with logarithmic transformation of both variables. Separate models are proposed for Primary and Lateral Leaves. Models based on the Lopes and Pinto (2005) method, using Mean Leaf Area multiplied by the number of Leaves as predictors, are proposed for the estimation for Total Primary and Lateral Leaf Area. It is suggested, that failure to locate the Largest Leaf of a Primary or Lateral shoot, would not significantly impair the accuracy of the models. All models explain a very high proportion of variability in Leaf Area and they can by applied in research and viticulture for the frequent estimation of Leaf Area in any phase of the growing cycle. They are inexpensive, practical, non-destructive methods which do not require specialised staff or expensive equipment
Fang, Hongliang. "Improving the estimation of leaf area index from multispectral remotely sensed data". College Park, Md. : University of Maryland, 2003. http://hdl.handle.net/1903/304.
Texto completoThesis research directed by: Geography. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Pacheco, Anna. "Contribution of hyperspectral remote sensing to the estimation of leaf area index in the context of precision agriculture". Thesis, University of Ottawa (Canada), 2004. http://hdl.handle.net/10393/26734.
Texto completoBanskota, Asim. "The discrete wavelet transform as a precursor to leaf area index estimation and species classification using airborne hyperspectral data". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/39188.
Texto completoPh. D.
Kandasamy, Sivasathivel. "Leaf Area Index (LAI) monitoring at global scale : improved definition, continuity and consistency of LAI estimates from kilometric satellite observations". Phd thesis, Université d'Avignon, 2013. http://tel.archives-ouvertes.fr/tel-00967319.
Texto completoMazumdar, Deepayan Dutta. "Multiangular crop differentiation and LAI estimation using PROSAIL model inversion". Thesis, Lethbridge, Alta. : University of Lethbridge, Dept. of Geography, c2011, 2011. http://hdl.handle.net/10133/3103.
Texto completoxiii, 161 leaves : ill., map ; 29 cm
Soma, Maxime. "Estimation de la distribution spatiale de surface et de biomasse foliaires de couverts forestiers méditerranéens à partir de nuages de points acquis par un LIDAR terrestre". Thesis, Aix-Marseille, 2019. http://www.theses.fr/2019AIXM0111.
Texto completoTo better understand functioning of forest ecosystems at fine scale, ecophysiological model attempt to include energy and material fluxes. Such exchanges depend on the distribution of vegetation. Hence, these models require a tridimensional (3D) description of vegetation structure, at a level of detail which can only be retrieve with remote sensing at large scale. Terrestrial LiDAR (Light Detection And Ranging) have a great potential to provide 3D description of vegetation elements in canopy. Previous studies established promising relations between the point density and quantity of vegetation. This work develop these statistical methods, focusing on source of errors. Systematic biases are corrected at branch, tree and plot scales. This study relies on both numerical simulations and field experiments. First, we test estimators on branches in laboratory conditions. On this natural vegetation, estimators are sensitive to voxel size and distance from instrument with phase-shift LiDAR. Developed corrections from this branch experiment are valid at tree scale. However, difficulties arising from sampling limitations due to occlusion and instrument sampling pattern cause negative biases in dense areas. Specific investigations are conducted to identify source of errors and to optimize multiscan estimations. A statistical method called LAD-kriging, based on spatial correlation within vegetation, improves local accuracy of estimations and limits underestimations due to occlusion. The tools produced in this work allow to map vegetation at plot scale by providing unbiased estimator of leaf area. Some of these tools are currently implemented within open access Computree software
Pinjuv, Guy L. "Hybrid forest modelling of Pinus Radiata D. Don in Canterbury, New Zealand". Thesis, University of Canterbury. New Zealand School of Forestry, 2006. http://hdl.handle.net/10092/1102.
Texto completoLibros sobre el tema "Leaf area estimation"
Frazer, G. W. A method for estimating canopy openness, effective leaf area index, and photosynthetically active photon flux density using hemispherical photography and computerized image analysis techniques. Victoria, B.C: Pacific Forestry Centre, 1997.
Buscar texto completoStolker, Robert Jan y Felix van Lier. Choice and interpretation of preoperative investigations. Editado por Jonathan G. Hardman. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199642045.003.0041.
Texto completoAddison, Tony y Atanu Ghoshray. Pandemics and their impact on oil and metal prices. UNU-WIDER, 2020. http://dx.doi.org/10.35188/unu-wider/2020/914-3.
Texto completoCapítulos de libros sobre el tema "Leaf area estimation"
Raj, Rahul, Saurabh Suradhaniwar, Rohit Nandan, Adinarayana Jagarlapudi y Jeffrey Walker. "Drone-Based Sensing for Leaf Area Index Estimation of Citrus Canopy". En Lecture Notes in Civil Engineering, 79–89. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37393-1_9.
Texto completoKorhonen, Lauri y Felix Morsdorf. "Estimation of Canopy Cover, Gap Fraction and Leaf Area Index with Airborne Laser Scanning". En Forestry Applications of Airborne Laser Scanning, 397–417. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-017-8663-8_20.
Texto completoYing-Ying, Dong, Wang Ji-Hua, Li Cun-Jun, Wang Qian y Huang Wen-Jiang. "Integration of Ground Observations and Crop Simulation Model for Crop Leaf Area Index Estimation". En Advances in Intelligent and Soft Computing, 831–37. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29637-6_112.
Texto completoFeng, Haikuan, Fuqin Yang, Guijun Yang y Haojie Pei. "Hyperspectral Estimation of Leaf Area Index of Winter Wheat Based on Akaike’s Information Criterion". En Computer and Computing Technologies in Agriculture X, 528–37. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-06155-5_54.
Texto completoBrown, Daniel G. "A Spectral Unmixing Approach to Leaf Area Index (LAI) Estimation at the Alpine Treeline Ecotone". En GIS and Remote Sensing Applications in Biogeography and Ecology, 7–21. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4615-1523-4_2.
Texto completoVichev, B. I. y K. G. Kostov. "Estimation of Leaf and Branch Area Indexes of Deciduous Trees Using Dual-Frequency Microwave Radiometric Data". En Microwave Physics and Techniques, 407–12. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5540-3_41.
Texto completoKorzukhin, Michael y Vasily Grabovsky. "Estimation of Leaf Area Index (LAI) of Russian Forests Using a Mechanical Model and Forest Inventory Data". En Innovations in Landscape Research, 341–61. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37421-1_18.
Texto completoLi, Dan, Hao Jiang, Shuisen Chen, Chongyang Wang, Siyu Huang y Wei Liu. "Leaf Area Index Estimation of Winter Pepper Based on Canopy Spectral Data and Simulated Bands of Satellite". En Communications in Computer and Information Science, 515–26. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3966-9_57.
Texto completoUdayakumar, M. y T. Sekar. "Estimation of Leaf Area–Wood Density Traits Relationship in Tropical Dry Evergreen Forests of Southern Coromandel Coast, Peninsular India". En Wood is Good, 169–87. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3115-1_17.
Texto completoLeal-Ramirez, Cecilia, Héctor Echavarría-Heras y Oscar Castillo. "Exploring the Suitability of a Genetic Algorithm as Tool for Boosting Efficiency in Monte Carlo Estimation of Leaf Area of Eelgrass". En Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization, 291–303. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17747-2_23.
Texto completoActas de conferencias sobre el tema "Leaf area estimation"
Lee, Sang-Ho, Myung-Min Oh y Jong-Ok Kim. "Plant Leaf Area Estimation via Image Segmentation". En 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). IEEE, 2022. http://dx.doi.org/10.1109/itc-cscc55581.2022.9894907.
Texto completoGhazal, Mohammed y Hassan Hajjdiab. "Leaf spot area index: A nondestructive mangrove leaf spot estimation technique". En 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES). IEEE, 2015. http://dx.doi.org/10.1109/spices.2015.7091414.
Texto completoBURG, Patrik, Jana BURGOVÁ, Vladimír MAŠÁN y Miroslav VACHŮN. "LEAF SURFACE AREA ESTIMATION IN DIFFERENT GRAPES VARIETIES USING A AM 300 LEAF AREA METER". En RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.037.
Texto completoHajjdiab, Hassan y Abdellatif Obaid. "A vision-based approach for nondestructive leaf area estimation". En 2010 2nd Conference on Environmental Science and Information Application Technology (ESIAT). IEEE, 2010. http://dx.doi.org/10.1109/esiat.2010.5568973.
Texto completoSoni, Amar Prasad, Amar Kumar Dey y Manisha Sharma. "An image processing technique for estimation of betel leaf area". En 2015 International Conference on Electrical, Electronics, Signals, Communication and Optimization (EESCO). IEEE, 2015. http://dx.doi.org/10.1109/eesco.2015.7253691.
Texto completoWang, Peicheng, Ling Tong, Xing Zhou, Xun Gang, Bo Gao, Yuxia Li y Yuan Sun. "Estimation of Leaf Area Index Based on Hemispherical Canopy Photography". En IGARSS 2021 - 2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021. http://dx.doi.org/10.1109/igarss47720.2021.9554699.
Texto completoFu, Wenxue, Huadong Guo y Xinwu Li. "Estimation of leaf area index (LAI) using POLInSAR: Preliminary research". En IGARSS 2011 - 2011 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2011. http://dx.doi.org/10.1109/igarss.2011.6048982.
Texto completoGe, Yunjian, Zhenbo Liu, Jian Chen y Tao Sun. "Estimation of paddy rice leaf area index using digital photography". En 2014 7th International Congress on Image and Signal Processing (CISP). IEEE, 2014. http://dx.doi.org/10.1109/cisp.2014.7003865.
Texto completoCheng, Yuanlei, Yunping Chen, Shuaifeng Jiao, Haichang Wei, Wangyao Shen, Yan Chen, Shilong Li y Hua Zhan. "Leaf Area Index Estimation from Hemisphere Image Based on GhostNet". En IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2022. http://dx.doi.org/10.1109/igarss46834.2022.9884777.
Texto completoYang, Zhiliang, Jiapei Tong, Mingchen Feng, Guoliang Hu, Jinqiao Wu y Yingchun Fan. "Soybean Leaf Segmentation and Area Estimation Based on Extreme Points". En ICMLC 2023: 2023 15th International Conference on Machine Learning and Computing. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3587716.3587782.
Texto completoInformes sobre el tema "Leaf area estimation"
Lockhart, Brian Roy, Emile S. Gardiner, Theran P. Stautz, Theodore D. Leininger, Paul B. Hamel, Kristina F. Connor, Nathan M. Schiff, A. Dan Wilson y Margaret S. Devall. Nondestructive estimation of leaf area for pondberry. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2007. http://dx.doi.org/10.2737/srs-rn-14.
Texto completoLockhart, Brian Roy, Emile S. Gardiner, Theran P. Stautz, Theodore D. Leininger, Paul B. Hamel, Kristina F. Connor, Nathan M. Schiff, A. Dan Wilson y Margaret S. Devall. Nondestructive estimation of leaf area for pondberry. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station, 2007. http://dx.doi.org/10.2737/srs-rn-14.
Texto completoDuncan, A. Estimation of Leak Rate from the Emergency Pump Well in L-Area Complex Basin. Office of Scientific and Technical Information (OSTI), diciembre de 2005. http://dx.doi.org/10.2172/890207.
Texto completoAzzi, Elias S., Cecilia Sundberg, Helena Söderqvist, Tom Källgren, Harald Cederlund y Haichao Li. Guidelines for estimation of biochar durability : Background report. Department of Energy and Technology, Swedish University of Agricultural Sciences, 2023. http://dx.doi.org/10.54612/a.lkbuavb9qc.
Texto completoEstache, Antonio, Ronaldo Seroa da Motta y Grégoire Garsous. Shared Mandates, Moral Hazard, and Political (Mis)alignment in a Decentralized Economy. Inter-American Development Bank, marzo de 2015. http://dx.doi.org/10.18235/0011691.
Texto completoHertel, Thomas, David Hummels, Maros Ivanic y Roman Keeney. How Confident Can We Be in CGE-Based Assessments of Free Trade Agreements? GTAP Working Paper, junio de 2003. http://dx.doi.org/10.21642/gtap.wp26.
Texto completoGelain, Paolo, Marco Lorusso y Saeed Zaman. Oil Price Fluctuations and US Banks. Federal Reserve Bank of Cleveland, mayo de 2024. http://dx.doi.org/10.26509/frbc-wp-202411.
Texto completoGranado, Camilo y Daniel Parra-Amado. Estimating the Output Gap After COVID: How to Address Unprecedented Macroeconomic Variations. Banco de la República, septiembre de 2023. http://dx.doi.org/10.32468/be.1249.
Texto completoDouglas, Thomas A., Christopher A. Hiemstra, Stephanie P. Saari, Kevin L. Bjella, Seth W. Campbell, M. Torre Jorgenson, Dana R. N. Brown y Anna K. Liljedahl. Degrading Permafrost Mapped with Electrical Resistivity Tomography, Airborne Imagery and LiDAR, and Seasonal Thaw Measurements. U.S. Army Engineer Research and Development Center, julio de 2021. http://dx.doi.org/10.21079/11681/41185.
Texto completoRodríguez, Francisco. Cleaning Up the Kitchen Sink: On the Consequences of the Linearity Assumption for Cross-Country Growth Empirics. Inter-American Development Bank, enero de 2006. http://dx.doi.org/10.18235/0011322.
Texto completo