Índice

  1. Tesis

Literatura académica sobre el tema "Lattices theory"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Lattices theory".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Tesis sobre el tema "Lattices theory"

1

Race, David M. (David Michael). "Consistency in Lattices." Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc331688/.

Texto completo
Resumen
Let L be a lattice. For x ∈ L, we say x is a consistent join-irreducible if x V y is a join-irreducible of the lattice [y,1] for all y in L. We say L is consistent if every join-irreducible of L is consistent. In this dissertation, we study the notion of consistent elements in semimodular lattices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Radu, Ion. "Stone's representation theorem." CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3087.

Texto completo
Resumen
The thesis analyzes some aspects of the theory of distributive lattices, particularly two representation theorems: Birkhoff's representation theorem for finite distributive lattices and Stone's representation theorem for infinite distributive lattices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Gragg, Karen E. (Karen Elizabeth). "Dually Semimodular Consistent Lattices." Thesis, North Texas State University, 1988. https://digital.library.unt.edu/ark:/67531/metadc330641/.

Texto completo
Resumen
A lattice L is said to be dually semimodular if for all elements a and b in L, a ∨ b covers b implies that a covers a ∧ b. L is consistent if for every join-irreducible j and every element x in L, the element x ∨ j is a join-irreducible in the upper interval [x,l]. In this paper, finite dually semimodular consistent lattices are investigated. Examples of these lattices are the lattices of subnormal subgroups of a finite group. In 1954, R. P. Dilworth proved that in a finite modular lattice, the number of elements covering exactly k elements is equal to the number of elements covered by exactly k elements. Here, it is established that if a finite dually semimodular consistent lattice has the same number of join-irreducibles as meet-irreducibles, then it is modular. Hence, a converse of Dilworth's theorem, in the case when k equals 1, is obtained for finite dually semimodular consistent lattices. Several combinatorial results are shown for finite consistent lattices similar to those already established for finite geometric lattices. The reach of an element x in a lattice L is the difference between the rank of x*, the join of x and all the elements covering x, and the rank of x; the maximum reach of all elements in L is the reach of L. Sharp lower bounds for the total number of elements and the number of elements of a given reach in a semimodular consistent lattice given the rank, the reach, and the number of join-irreducibles are found. Extremal lattices attaining these bounds are described. Similar results are then obtained for finite dually semimodular consistent lattices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Cheng, Y. "Theory of integrable lattices." Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.568779.

Texto completo
Resumen
This thesis deals with the theory of integrable lattices in "solitons" throughout. Chapter 1 is a general introduction, which includes an historical survey and a short surrunary of the "solitons" theory and the present work. In Chapter 2, we discuss the equivalence between two kinds of lattice AKNS spectral problems - one includes two potentials, while the other includes four. The two nonlinear lattice systems associated with those two spectral problems, respectively is also proved to be equivalent to each other. In Chapter 3, we derive a class of nonlinear differential-difference equations (NDDEs) and put them into the Hamiltonian systems. Their complete integrability are proved in terms of so called "r-matrix". In the end of this Chapter, we study the symmetry properties and the related topics for lattice systems. In particular, we give detail for the Toda lattice systems. Chapter 4 is concerned with the Backlund transformations (BTs) and nonlinear superposition formulae (NSFs) for a class of NDDEs. A new method is presented to derive the generalized BTs and to prove that these BTs are precisely and really the auto-BTs. The three kinds of NSFs are derived by analysis of so called "elementary BTs". In Chapter 5, we investigate some relations between our lattices and the well-studied continuous systems. The continuum limits of our lattice systems and the discretizations of the continuous systems are discussed. The other study is about how we can consider a BT of continuous systems as a NDDE and then how a BT of such a NDDE can be reduced to the three kinds of NSFs of the continuous systems. The last Chapter is a study of integrable lattices under periodic boundary conditions. It provides a mathematical foundation for the study of integrable models in statistical mechanics. We are particularly interested in the lattice sine-Gordon and sinh-Gordon models. We not only prove the integrability of these models but also derive all kinds of classical phase shifts and some other physically interesting relations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Heeney, Xiang Xia Huang. "Small lattices." Thesis, University of Hawaii at Manoa, 2000. http://hdl.handle.net/10125/25936.

Texto completo
Resumen
This dissertation introduces triple gluing lattices and proves that a triple gluing lattice is small if the key subcomponents are small. Then attention is turned to triple gluing irreducible small lattices. The triple gluing irreducible [Special characters omitted.] lattices are introduced. The conditions which insure [Special characters omitted.] small are discovered. This dissertation also give some triple gluing irreducible small lattices by gluing [Special characters omitted.] 's. Finally, K-structured lattices are introduced. We prove that a K-structured lattice L is triple gluing irreducible if and only if [Special characters omitted.] . We prove that no 4-element antichain lies in u 1 /v1 of a K-structured small lattice. We also prove that some special lattices with 3-element antichains can not lie in u1 /v1 of a K-structured small lattice.<br>viii, 87 leaves, bound : ill. ; 29 cm.<br>Thesis (Ph. D.)--University of Hawaii at Manoa, 2000.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Craig, Andrew Philip Knott. "Lattice-valued uniform convergence spaces the case of enriched lattices." Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1005225.

Texto completo
Resumen
Using a pseudo-bisymmetric enriched cl-premonoid as the underlying lattice, we examine different categories of lattice-valued spaces. Lattice-valued topological spaces, uniform spaces and limit spaces are described, and we produce a new definition of stratified lattice-valued uniform convergence spaces in this generalised lattice context. We show that the category of stratified L-uniform convergence spaces is topological, and that the forgetful functor preserves initial constructions for the underlying stratified L-limit space. For the case of L a complete Heyting algebra, it is shown that the category of stratified L-uniform convergence spaces is cartesian closed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Jipsen, Peter. "Varieties of lattices." Master's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/15851.

Texto completo
Resumen
Bibliography: pages 140-145.<br>An interesting problem in universal algebra is the connection between the internal structure of an algebra and the identities which it satisfies. The study of varieties of algebras provides some insight into this problem. Here we are concerned mainly with lattice varieties, about which a wealth of information has been obtained in the last twenty years. We begin with some preliminary results from universal algebra and lattice theory. The next chapter presents some properties of the lattice of all lattice sub-varieties. Here we also discuss the important notion of a splitting pair of varieties and give several characterisations of the associated splitting lattice. The more detailed study of lattice varieties splits naturally into the study of modular lattice varieties and non-modular lattice varieties, dealt with in the second and third chapter respectively. Among the results discussed there are Freese's theorem that the variety of all modular lattices is not generated by its finite members, and several results concerning the question which varieties cover a given variety. The fourth chapter contains a proof of Baker's finite basis theorem and some results about the join of finitely based lattice varieties. Included in the last chapter is a characterisation of the amalgamation classes of certain congruence distributive varieties and the result that there are only three lattice varieties which have the amalgamation property.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bystrik, Anna. "On Delocalization Effects in Multidimensional Lattices." Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278868/.

Texto completo
Resumen
A cubic lattice with random parameters is reduced to a linear chain by the means of the projection technique. The continued fraction expansion (c.f.e.) approach is herein applied to the density of states. Coefficients of the c.f.e. are obtained numerically by the recursion procedure. Properties of the non-stationary second moments (correlations and dispersions) of their distribution are studied in a connection with the other evidences of transport in a one-dimensional Mori chain. The second moments and the spectral density are computed for the various degrees of disorder in the prototype lattice. The possible directions of the further development are outlined. The physical problem that is addressed in the dissertation is the possibility of the existence of a non-Anderson disorder of a specific type. More precisely, this type of a disorder in the one-dimensional case would result in a positive localization threshold. A specific type of such non-Anderson disorder was obtained by adopting a transformation procedure which assigns to the matrix expressing the physics of the multidimensional crystal a tridiagonal Hamiltonian. This Hamiltonian is then assigned to an equivalent one-dimensional tight-binding model. One of the benefits of this approach is that we are guaranteed to obtain a linear crystal with a positive localization threshold. The reason for this is the existence of a threshold in a prototype sample. The resulting linear model is found to be characterized by a correlated and a nonstationary disorder. The existence of such special disorder is associated with the absence of Anderson localization in specially constructed one-dimensional lattices, when the noise intensity is below the non-zero critical value. This work is an important step towards isolating the general properties of a non-Anderson noise. This gives a basis for understanding of the insulator to metal transition in a linear crystal with a subcritical noise.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Madison, Kirk William. "Quantum transport in optical lattices /." Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ocansey, Evans Doe. "Enumeration problems on lattices." Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80393.

Texto completo
Resumen
Thesis (MSc)--Stellenbosch University, 2013.<br>ENGLISH ABSTRACT: The main objective of our study is enumerating spanning trees (G) and perfect matchings PM(G) on graphs G and lattices L. We demonstrate two methods of enumerating spanning trees of any connected graph, namely the matrix-tree theorem and as a special value of the Tutte polynomial T(G; x; y). We present a general method for counting spanning trees on lattices in d 2 dimensions. In particular we apply this method on the following regular lattices with d = 2: rectangular, triangular, honeycomb, kagomé, diced, 9 3 lattice and its dual lattice to derive a explicit formulas for the number of spanning trees of these lattices of finite sizes. Regarding the problem of enumerating of perfect matchings, we prove Cayley’s theorem which relates the Pfaffian of a skew symmetric matrix to its determinant. Using this and defining the Pfaffian orientation on a planar graph, we derive explicit formula for the number of perfect matchings on the following planar lattices; rectangular, honeycomb and triangular. For each of these lattices, we also determine the bulk limit or thermodynamic limit, which is a natural measure of the rate of growth of the number of spanning trees (L) and the number of perfect matchings PM(L). An algorithm is implemented in the computer algebra system SAGE to count the number of spanning trees as well as the number of perfect matchings of the lattices studied.<br>AFRIKAANSE OPSOMMING: Die hoofdoel van ons studie is die aftelling van spanbome (G) en volkome afparings PM(G) in grafieke G en roosters L. Ons beskou twee metodes om spanbome in ’n samehangende grafiek af te tel, naamlik deur middel van die matriks-boom-stelling, en as ’n spesiale waarde van die Tutte polinoom T(G; x; y). Ons behandel ’n algemene metode om spanbome in roosters in d 2 dimensies af te tel. In die besonder pas ons hierdie metode toe op die volgende reguliere roosters met d = 2: reghoekig, driehoekig, heuningkoek, kagomé, blokkies, 9 3 rooster en sy duale rooster. Ons bepaal eksplisiete formules vir die aantal spanbome in hierdie roosters van eindige grootte. Wat die aftelling van volkome afparings aanbetref, gee ons ’n bewys van Cayley se stelling wat die Pfaffiaan van ’n skeefsimmetriese matriks met sy determinant verbind. Met behulp van hierdie stelling en Pfaffiaanse oriënterings van planare grafieke bepaal ons eksplisiete formules vir die aantal volkome afparings in die volgende planare roosters: reghoekig, driehoekig, heuningkoek. Vir elk van hierdie roosters word ook die “grootmaat limiet” (of termodinamiese limiet) bepaal, wat ’n natuurlike maat vir die groeitempo van die aantaal spanbome (L) en die aantal volkome afparings PM(L) voorstel. ’n Algoritme is in die rekenaaralgebra-stelsel SAGE geimplementeer om die aantal spanboome asook die aantal volkome afparings in die toepaslike roosters af te tel.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía