Literatura académica sobre el tema "Lattices theory"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Lattices theory".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Lattices theory"
Day, Alan. "Doubling Constructions in Lattice Theory". Canadian Journal of Mathematics 44, n.º 2 (1 de abril de 1992): 252–69. http://dx.doi.org/10.4153/cjm-1992-017-7.
Texto completoFlaut, Cristina, Dana Piciu y Bianca Liana Bercea. "Some Applications of Fuzzy Sets in Residuated Lattices". Axioms 13, n.º 4 (18 de abril de 2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Texto completoHarremoës, Peter. "Entropy Inequalities for Lattices". Entropy 20, n.º 10 (12 de octubre de 2018): 784. http://dx.doi.org/10.3390/e20100784.
Texto completoJežek, J., P. PudláK y J. Tůma. "On equational theories of semilattices with operators". Bulletin of the Australian Mathematical Society 42, n.º 1 (agosto de 1990): 57–70. http://dx.doi.org/10.1017/s0004972700028148.
Texto completoFrapolli, Nicolò, Shyam Chikatamarla y Ilya Karlin. "Theory, Analysis, and Applications of the Entropic Lattice Boltzmann Model for Compressible Flows". Entropy 22, n.º 3 (24 de marzo de 2020): 370. http://dx.doi.org/10.3390/e22030370.
Texto completoMcCulloch, Ryan. "Finite groups with a trivial Chermak–Delgado subgroup". Journal of Group Theory 21, n.º 3 (1 de mayo de 2018): 449–61. http://dx.doi.org/10.1515/jgth-2017-0042.
Texto completoGrabowski, Adam. "Stone Lattices". Formalized Mathematics 23, n.º 4 (1 de diciembre de 2015): 387–96. http://dx.doi.org/10.1515/forma-2015-0031.
Texto completoBronzan, J. B. "Hamiltonian lattice gauge theory: wavefunctions on large lattices". Nuclear Physics B - Proceedings Supplements 30 (marzo de 1993): 916–19. http://dx.doi.org/10.1016/0920-5632(93)90356-b.
Texto completoGe, Mo-Lin, Liangzhong Hu y Yiwen Wang. "KNOT THEORY, PARTITION FUNCTION AND FRACTALS". Journal of Knot Theory and Its Ramifications 05, n.º 01 (febrero de 1996): 37–54. http://dx.doi.org/10.1142/s0218216596000047.
Texto completoNEBE, GABRIELE. "ON AUTOMORPHISMS OF EXTREMAL EVEN UNIMODULAR LATTICES". International Journal of Number Theory 09, n.º 08 (diciembre de 2013): 1933–59. http://dx.doi.org/10.1142/s179304211350067x.
Texto completoTesis sobre el tema "Lattices theory"
Race, David M. (David Michael). "Consistency in Lattices". Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc331688/.
Texto completoRadu, Ion. "Stone's representation theorem". CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3087.
Texto completoGragg, Karen E. (Karen Elizabeth). "Dually Semimodular Consistent Lattices". Thesis, North Texas State University, 1988. https://digital.library.unt.edu/ark:/67531/metadc330641/.
Texto completoCheng, Y. "Theory of integrable lattices". Thesis, University of Manchester, 1987. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.568779.
Texto completoHeeney, Xiang Xia Huang. "Small lattices". Thesis, University of Hawaii at Manoa, 2000. http://hdl.handle.net/10125/25936.
Texto completoviii, 87 leaves, bound : ill. ; 29 cm.
Thesis (Ph. D.)--University of Hawaii at Manoa, 2000.
Craig, Andrew Philip Knott. "Lattice-valued uniform convergence spaces the case of enriched lattices". Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1005225.
Texto completoJipsen, Peter. "Varieties of lattices". Master's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/15851.
Texto completoAn interesting problem in universal algebra is the connection between the internal structure of an algebra and the identities which it satisfies. The study of varieties of algebras provides some insight into this problem. Here we are concerned mainly with lattice varieties, about which a wealth of information has been obtained in the last twenty years. We begin with some preliminary results from universal algebra and lattice theory. The next chapter presents some properties of the lattice of all lattice sub-varieties. Here we also discuss the important notion of a splitting pair of varieties and give several characterisations of the associated splitting lattice. The more detailed study of lattice varieties splits naturally into the study of modular lattice varieties and non-modular lattice varieties, dealt with in the second and third chapter respectively. Among the results discussed there are Freese's theorem that the variety of all modular lattices is not generated by its finite members, and several results concerning the question which varieties cover a given variety. The fourth chapter contains a proof of Baker's finite basis theorem and some results about the join of finitely based lattice varieties. Included in the last chapter is a characterisation of the amalgamation classes of certain congruence distributive varieties and the result that there are only three lattice varieties which have the amalgamation property.
Bystrik, Anna. "On Delocalization Effects in Multidimensional Lattices". Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278868/.
Texto completoMadison, Kirk William. "Quantum transport in optical lattices /". Digital version accessible at:, 1998. http://wwwlib.umi.com/cr/utexas/main.
Texto completoOcansey, Evans Doe. "Enumeration problems on lattices". Thesis, Stellenbosch : Stellenbosch University, 2013. http://hdl.handle.net/10019.1/80393.
Texto completoENGLISH ABSTRACT: The main objective of our study is enumerating spanning trees (G) and perfect matchings PM(G) on graphs G and lattices L. We demonstrate two methods of enumerating spanning trees of any connected graph, namely the matrix-tree theorem and as a special value of the Tutte polynomial T(G; x; y). We present a general method for counting spanning trees on lattices in d 2 dimensions. In particular we apply this method on the following regular lattices with d = 2: rectangular, triangular, honeycomb, kagomé, diced, 9 3 lattice and its dual lattice to derive a explicit formulas for the number of spanning trees of these lattices of finite sizes. Regarding the problem of enumerating of perfect matchings, we prove Cayley’s theorem which relates the Pfaffian of a skew symmetric matrix to its determinant. Using this and defining the Pfaffian orientation on a planar graph, we derive explicit formula for the number of perfect matchings on the following planar lattices; rectangular, honeycomb and triangular. For each of these lattices, we also determine the bulk limit or thermodynamic limit, which is a natural measure of the rate of growth of the number of spanning trees (L) and the number of perfect matchings PM(L). An algorithm is implemented in the computer algebra system SAGE to count the number of spanning trees as well as the number of perfect matchings of the lattices studied.
AFRIKAANSE OPSOMMING: Die hoofdoel van ons studie is die aftelling van spanbome (G) en volkome afparings PM(G) in grafieke G en roosters L. Ons beskou twee metodes om spanbome in ’n samehangende grafiek af te tel, naamlik deur middel van die matriks-boom-stelling, en as ’n spesiale waarde van die Tutte polinoom T(G; x; y). Ons behandel ’n algemene metode om spanbome in roosters in d 2 dimensies af te tel. In die besonder pas ons hierdie metode toe op die volgende reguliere roosters met d = 2: reghoekig, driehoekig, heuningkoek, kagomé, blokkies, 9 3 rooster en sy duale rooster. Ons bepaal eksplisiete formules vir die aantal spanbome in hierdie roosters van eindige grootte. Wat die aftelling van volkome afparings aanbetref, gee ons ’n bewys van Cayley se stelling wat die Pfaffiaan van ’n skeefsimmetriese matriks met sy determinant verbind. Met behulp van hierdie stelling en Pfaffiaanse oriënterings van planare grafieke bepaal ons eksplisiete formules vir die aantal volkome afparings in die volgende planare roosters: reghoekig, driehoekig, heuningkoek. Vir elk van hierdie roosters word ook die “grootmaat limiet” (of termodinamiese limiet) bepaal, wat ’n natuurlike maat vir die groeitempo van die aantaal spanbome (L) en die aantal volkome afparings PM(L) voorstel. ’n Algoritme is in die rekenaaralgebra-stelsel SAGE geimplementeer om die aantal spanboome asook die aantal volkome afparings in die toepaslike roosters af te tel.
Libros sobre el tema "Lattices theory"
Kun, Huang, ed. Dynamical theory of crystal lattices. Oxford: Clarendon, 1985.
Buscar texto completoStern, Manfred. Semimodular lattices: Theory and applications. Cambridge: Cambridge University Press, 1999.
Buscar texto completoSemimodular lattices. Stuttgart: B.G. Teubner, 1991.
Buscar texto completoLattice theory: First concepts and distributive lattices. Mineola, N.Y: Dover Publications, 2009.
Buscar texto completoFreese, Ralph S. Free lattices. Providence, R.I: American Mathematical Society, 1995.
Buscar texto completoToda, Morikazu. Theory of Nonlinear Lattices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-83219-2.
Texto completoToda, Morikazu. Theory of Nonlinear Lattices. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989.
Buscar texto completoTheory of nonlinear lattices. 2a ed. Berlin: Springer-Verlag, 1989.
Buscar texto completo1951-, Hoffmann R. E. y Hofmann Karl Heinrich, eds. Continuous lattices and their applications. New York: M. Dekker, 1985.
Buscar texto completoservice), SpringerLink (Online, ed. Lattice Theory: Foundation. Basel: Springer Basel AG, 2011.
Buscar texto completoCapítulos de libros sobre el tema "Lattices theory"
Aigner, Martin. "Lattices". En Combinatorial Theory, 30–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59101-3_3.
Texto completoZheng, Zhiyong, Kun Tian y Fengxia Liu. "Random Lattice Theory". En Financial Mathematics and Fintech, 1–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_1.
Texto completoCorsini, Piergiulio y Violeta Leoreanu. "Lattices". En Applications of Hyperstructure Theory, 121–60. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4757-3714-1_5.
Texto completoTrifković, Mak. "Lattices". En Algebraic Theory of Quadratic Numbers, 45–59. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7717-4_3.
Texto completoBeran, Ladislav. "Elementary Theory of Orthomodular Lattices". En Orthomodular Lattices, 28–69. Dordrecht: Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-009-5215-7_2.
Texto completoMeyer-Nieberg, Peter. "Spectral Theory of Positive Operators". En Banach Lattices, 247–319. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76724-1_4.
Texto completoGrätzer, George. "Distributive Lattices". En General Lattice Theory, 79–168. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_2.
Texto completoConstantinescu, Corneliu, Wolfgang Filter, Karl Weber y Alexia Sontag. "Vector Lattices". En Advanced Integration Theory, 21–278. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-007-0852-5_4.
Texto completoGrätzer, George. "Distributive Lattices". En Lattice Theory: Foundation, 109–205. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1_2.
Texto completoKopytov, V. M. y N. Ya Medvedev. "Lattices". En The Theory of Lattice-Ordered Groups, 1–9. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8304-6_1.
Texto completoActas de conferencias sobre el tema "Lattices theory"
Cosmadakis, Stavros S. "Database theory and cylindric lattices". En 28th Annual Symposium on Foundations of Computer Science. IEEE, 1987. http://dx.doi.org/10.1109/sfcs.1987.17.
Texto completoSalomon, A. J. y O. Amrani. "On decoding product lattices". En IEEE Information Theory Workshop, 2005. IEEE, 2005. http://dx.doi.org/10.1109/itw.2005.1531883.
Texto completoHorowitz, Alan. "Fermions on Simplicial Lattices and their Dual Lattices". En The 36th Annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0235.
Texto completoZamir, R. "Lattices are everywhere". En 2009 Information Theory and Applications Workshop (ITA). IEEE, 2009. http://dx.doi.org/10.1109/ita.2009.5044976.
Texto completoYao, Y. Y. "Concept lattices in rough set theory". En IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS '04. IEEE, 2004. http://dx.doi.org/10.1109/nafips.2004.1337404.
Texto completoKnuth, K. H. "Valuations on Lattices and their Application to Information Theory". En 2006 IEEE International Conference on Fuzzy Systems. IEEE, 2006. http://dx.doi.org/10.1109/fuzzy.2006.1681717.
Texto completoBoutros, Joseph J., Nicola di Pietro y Nour Basha. "Generalized low-density (GLD) lattices". En 2014 IEEE Information Theory Workshop (ITW). IEEE, 2014. http://dx.doi.org/10.1109/itw.2014.6970783.
Texto completoMeurice, Yannick. "QCD calculations with optical lattices?" En XXIX International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.139.0040.
Texto completoHotzy, Paul, Kirill Boguslavski, David I. Müller y Dénes Sexty. "Highly anisotropic lattices for Yang-Mills theory". En The 40th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.453.0150.
Texto completoKapetanovic, Dzevdan, Hei Victor Cheng, Wai Ho Mow y Fredrik Rusek. "Optimal lattices for MIMO precoding". En 2011 IEEE International Symposium on Information Theory - ISIT. IEEE, 2011. http://dx.doi.org/10.1109/isit.2011.6034112.
Texto completoInformes sobre el tema "Lattices theory"
McCune, W. y R. Padmanabhan. Single identities for lattice theory and for weakly associative lattices. Office of Scientific and Technical Information (OSTI), marzo de 1995. http://dx.doi.org/10.2172/510566.
Texto completoYang, Jianke. Theory and Applications of Nonlinear Optics in Optically-Induced Photonic Lattices. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2012. http://dx.doi.org/10.21236/ada565296.
Texto completoYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), junio de 1992. http://dx.doi.org/10.2172/10156563.
Texto completoYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), junio de 1992. http://dx.doi.org/10.2172/5082303.
Texto completoBecher, Thomas G. Continuum methods in lattice perturbation theory. Office of Scientific and Technical Information (OSTI), noviembre de 2002. http://dx.doi.org/10.2172/808671.
Texto completoHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), enero de 1993. http://dx.doi.org/10.2172/6441616.
Texto completoHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), enero de 1993. http://dx.doi.org/10.2172/6590163.
Texto completoBrower, Richard C. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), abril de 2014. http://dx.doi.org/10.2172/1127446.
Texto completoNegele, John W. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), junio de 2012. http://dx.doi.org/10.2172/1165874.
Texto completoReed, Daniel, A. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), mayo de 2008. http://dx.doi.org/10.2172/951263.
Texto completo