Literatura académica sobre el tema "Lattice theory"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Lattice theory".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Lattice theory"
Day, Alan. "Doubling Constructions in Lattice Theory". Canadian Journal of Mathematics 44, n.º 2 (1 de abril de 1992): 252–69. http://dx.doi.org/10.4153/cjm-1992-017-7.
Texto completoHarremoës, Peter. "Entropy Inequalities for Lattices". Entropy 20, n.º 10 (12 de octubre de 2018): 784. http://dx.doi.org/10.3390/e20100784.
Texto completoFlaut, Cristina, Dana Piciu y Bianca Liana Bercea. "Some Applications of Fuzzy Sets in Residuated Lattices". Axioms 13, n.º 4 (18 de abril de 2024): 267. http://dx.doi.org/10.3390/axioms13040267.
Texto completoMcCulloch, Ryan. "Finite groups with a trivial Chermak–Delgado subgroup". Journal of Group Theory 21, n.º 3 (1 de mayo de 2018): 449–61. http://dx.doi.org/10.1515/jgth-2017-0042.
Texto completoJežek, J., P. PudláK y J. Tůma. "On equational theories of semilattices with operators". Bulletin of the Australian Mathematical Society 42, n.º 1 (agosto de 1990): 57–70. http://dx.doi.org/10.1017/s0004972700028148.
Texto completoBallal, Sachin y Vilas Kharat. "Zariski topology on lattice modules". Asian-European Journal of Mathematics 08, n.º 04 (17 de noviembre de 2015): 1550066. http://dx.doi.org/10.1142/s1793557115500667.
Texto completoJežek, Jaroslav y George F. McNulty. "The existence of finitely based lower covers for finitely based equational theories". Journal of Symbolic Logic 60, n.º 4 (diciembre de 1995): 1242–50. http://dx.doi.org/10.2307/2275885.
Texto completoFuta, Yuichi y Yasunari Shidama. "Lattice of ℤ-module". Formalized Mathematics 24, n.º 1 (1 de marzo de 2016): 49–68. http://dx.doi.org/10.1515/forma-2016-0005.
Texto completoBronzan, J. B. "Hamiltonian lattice gauge theory: wavefunctions on large lattices". Nuclear Physics B - Proceedings Supplements 30 (marzo de 1993): 916–19. http://dx.doi.org/10.1016/0920-5632(93)90356-b.
Texto completoJANSEN, KARL. "LATTICE FIELD THEORY". International Journal of Modern Physics E 16, n.º 09 (octubre de 2007): 2638–79. http://dx.doi.org/10.1142/s0218301307008355.
Texto completoTesis sobre el tema "Lattice theory"
Race, David M. (David Michael). "Consistency in Lattices". Thesis, North Texas State University, 1986. https://digital.library.unt.edu/ark:/67531/metadc331688/.
Texto completoRadu, Ion. "Stone's representation theorem". CSUSB ScholarWorks, 2007. https://scholarworks.lib.csusb.edu/etd-project/3087.
Texto completoEndres, Michael G. "Topics in lattice field theory /". Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/9713.
Texto completoBowman, K. "A lattice theory for algebras". Thesis, Lancaster University, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.234611.
Texto completoMichels, Amanda Therese. "Aspects of lattice gauge theory". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.297217.
Texto completoBuckle, John Francis. "Computational aspects of lattice theory". Thesis, University of Warwick, 1989. http://wrap.warwick.ac.uk/106446/.
Texto completoCraig, Andrew Philip Knott. "Lattice-valued uniform convergence spaces the case of enriched lattices". Thesis, Rhodes University, 2008. http://hdl.handle.net/10962/d1005225.
Texto completoPugh, David John Rhydwyn. "Topological structures in lattice gauge theory". Thesis, University of Oxford, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.279896.
Texto completoSchaich, David. "Strong dynamics and lattice gauge theory". Thesis, Boston University, 2012. https://hdl.handle.net/2144/32057.
Texto completoIn this dissertation I use lattice gauge theory to study models of electroweak symmetry breaking that involve new strong dynamics. Electroweak symmetry breaking (EWSB) is the process by which elementary particles acquire mass. First proposed in the 1960s, this process has been clearly established by experiments, and can now be considered a law of nature. However, the physics underlying EWSB is still unknown, and understanding it remains a central challenge in particle physics today. A natural possibility is that EWSB is driven by the dynamics of some new, strongly-interacting force. Strong interactions invalidate the standard analytical approach of perturbation theory, making these models difficult to study. Lattice gauge theory is the premier method for obtaining quantitatively-reliable, nonperturbative predictions from strongly-interacting theories. In this approach, we replace spacetime by a regular, finite grid of discrete sites connected by links. The fields and interactions described by the theory are likewise discretized, and defined on the lattice so that we recover the original theory in continuous spacetime on an infinitely large lattice with sites infinitesimally close together. The finite number of degrees of freedom in the discretized system lets us simulate the lattice theory using high-performance computing. Lattice gauge theory has long been applied to quantum chromodynamics, the theory of strong nuclear interactions. Using lattice gauge theory to study dynamical EWSB, as I do in this dissertation, is a new and exciting application of these methods. Of particular interest is non-perturbative lattice calculation of the electroweak S parameter. Experimentally S ~ -0.15(10), which tightly constrains dynamical EWSB. On the lattice, I extract S from the momentum-dependence of vector and axial-vector current correlators. I created and applied computer programs to calculate these correlators and analyze them to determine S. I also calculated the masses and other properties of the new particles predicted by these theories. I find S > 0.1 in the specific theories I study. Although this result still disagrees with experiment, it is much closer to the experimental value than is the conventional wisdom S > 0.3. These results encourage further lattice studies to search for experimentally viable strongly-interacting theories of EWSB.
Schenk, Stefan. "Density functional theory on a lattice". kostenfrei, 2009. http://d-nb.info/998385956/34.
Texto completoLibros sobre el tema "Lattice theory"
Bunk, B., K. H. Mütter y K. Schilling, eds. Lattice Gauge Theory. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2231-3.
Texto completoGrätzer, George. General Lattice Theory. Basel: Birkhäuser Basel, 1996. http://dx.doi.org/10.1007/978-3-0348-9326-8.
Texto completoGrätzer, George. Lattice Theory: Foundation. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1.
Texto completoservice), SpringerLink (Online, ed. Lattice Theory: Foundation. Basel: Springer Basel AG, 2011.
Buscar texto completoStern, Manfred. Semimodular lattices: Theory and applications. Cambridge: Cambridge University Press, 1999.
Buscar texto completoKrätzel, Ekkehard. Lattice points. Dordrecht: Kluwer Academic Publishers, 1988.
Buscar texto completoSatz, Helmut, Isabel Harrity y Jean Potvin, eds. Lattice Gauge Theory ’86. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1909-2.
Texto completoSatz, H. Lattice Gauge Theory '86. Boston, MA: Springer US, 1987.
Buscar texto completoH, Satz, Harrity Isabel, Potvin Jean, North Atlantic Treaty Organization. Scientific Affairs Division. y International Workshop "Lattice Gauge Theory 1986" (1986 : Brookhaven National Laboratory), eds. Lattice gauge theory '86. New York: Plenum Press, 1987.
Buscar texto completoos, Paul Erd. Lattice points. Harlow: Longman Scientific & Technical, 1989.
Buscar texto completoCapítulos de libros sobre el tema "Lattice theory"
Zheng, Zhiyong, Kun Tian y Fengxia Liu. "Random Lattice Theory". En Financial Mathematics and Fintech, 1–32. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-7644-5_1.
Texto completoAl-Haj Baddar, Sherenaz W. y Kenneth E. Batcher. "Lattice Theory". En Designing Sorting Networks, 61–71. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1851-1_10.
Texto completoRitter, Gerhard X. y Gonzalo Urcid. "Lattice Theory". En Introduction to Lattice Algebra, 81–109. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003154242-3.
Texto completoYadav, Santosh Kumar. "Lattice Theory". En Discrete Mathematics with Graph Theory, 271–304. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21321-2_6.
Texto completoGrätzer, George. "Lattice Constructions". En Lattice Theory: Foundation, 255–306. Basel: Springer Basel, 2011. http://dx.doi.org/10.1007/978-3-0348-0018-1_4.
Texto completoStone, Michael. "Lattice Field Theory". En Graduate Texts in Contemporary Physics, 185–200. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0507-4_15.
Texto completoYanagihara, Ryosuke. "Lattice Field Theory". En Springer Theses, 37–53. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6234-8_3.
Texto completoGrätzer, George. "First Concepts". En General Lattice Theory, 1–77. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_1.
Texto completoGrätzer, George. "Distributive Lattices". En General Lattice Theory, 79–168. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_2.
Texto completoGrätzer, George. "Congruences and Ideals". En General Lattice Theory, 169–210. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-9326-8_3.
Texto completoActas de conferencias sobre el tema "Lattice theory"
Monahan, Christopher. "Automated Lattice Perturbation Theory". En 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0021.
Texto completoLambrou, Eliana, Luigi Del Debbio, R. D. Kenway y Enrico Rinaldi. "Searching for a continuum 4D field theory arising from a 5D non-abelian gauge theory". En 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0107.
Texto completoBursa, F. y Michael Kroyter. "Lattice String Field Theory". En The XXVIII International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2011. http://dx.doi.org/10.22323/1.105.0047.
Texto completoKieburg, Mario, Jacobus Verbaarschot y Savvas Zafeiropoulos. "A classification of 2-dim Lattice Theory". En 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0337.
Texto completoShao, Yingchao, Li Fu, Fei Hao y Keyun Qin. "Rough Lattice: A Combination with the Lattice Theory and the Rough Set Theory". En 2016 International Conference on Mechatronics, Control and Automation Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mcae-16.2016.23.
Texto completoBietenholz, Wolfgang, Ivan Hip y David Landa-Marban. "Spectral Properties of a 2d IR Conformal Theory". En 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0486.
Texto completoZubkov, Mikhail. "Gauge theory of Lorentz group on the lattice". En 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0095.
Texto completoVeernala, Aarti y Simon Catterall. "Four Fermion Interactions in Non Abelian Gauge Theory". En 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0108.
Texto completoBergner, Georg, Jens Langelage y Owe Philipsen. "Effective lattice theory for finite temperature Yang Mills". En 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0133.
Texto completoHesse, Dirk, Stefan Sint, Francesco Di Renzo, Mattia Dalla Brida y Michele Brambilla. "The Schrödinger Functional in Numerical Stochastic Perturbation Theory". En 31st International Symposium on Lattice Field Theory LATTICE 2013. Trieste, Italy: Sissa Medialab, 2014. http://dx.doi.org/10.22323/1.187.0325.
Texto completoInformes sobre el tema "Lattice theory"
McCune, W. y R. Padmanabhan. Single identities for lattice theory and for weakly associative lattices. Office of Scientific and Technical Information (OSTI), marzo de 1995. http://dx.doi.org/10.2172/510566.
Texto completoYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), junio de 1992. http://dx.doi.org/10.2172/10156563.
Texto completoYee, Ken. Lattice gaugefixing and other optics in lattice gauge theory. Office of Scientific and Technical Information (OSTI), junio de 1992. http://dx.doi.org/10.2172/5082303.
Texto completoBecher, Thomas G. Continuum methods in lattice perturbation theory. Office of Scientific and Technical Information (OSTI), noviembre de 2002. http://dx.doi.org/10.2172/808671.
Texto completoHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), enero de 1993. http://dx.doi.org/10.2172/6441616.
Texto completoHasslacher, B. Lattice gas hydrodynamics: Theory and simulations. Office of Scientific and Technical Information (OSTI), enero de 1993. http://dx.doi.org/10.2172/6590163.
Texto completoBrower, Richard C. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), abril de 2014. http://dx.doi.org/10.2172/1127446.
Texto completoNegele, John W. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), junio de 2012. http://dx.doi.org/10.2172/1165874.
Texto completoReed, Daniel, A. National Computational Infrastructure for Lattice Gauge Theory. Office of Scientific and Technical Information (OSTI), mayo de 2008. http://dx.doi.org/10.2172/951263.
Texto completoCreutz, M. Lattice gauge theory and Monte Carlo methods. Office of Scientific and Technical Information (OSTI), noviembre de 1988. http://dx.doi.org/10.2172/6530895.
Texto completo