Literatura académica sobre el tema "Lateral heterostructures"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Lateral heterostructures".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Lateral heterostructures"
Guha, Puspendu, Joon Young Park, Janghyun Jo, Yunyeong Chang, Hyeonhu Bae, Rajendra Kumar Saroj, Hoonkyung Lee, Miyoung Kim y Gyu-Chul Yi. "Molecular beam epitaxial growth of Sb2Te3–Bi2Te3 lateral heterostructures". 2D Materials 9, n.º 2 (31 de enero de 2022): 025006. http://dx.doi.org/10.1088/2053-1583/ac421a.
Texto completoZhang, Jianzhi, Hongfu Huang, Junhao Peng, Chuyu Li, Huafeng Dong, Sifan Kong, Yiyuan Xie, Runqian Wu, Minru Wen y Fugen Wu. "A Cost-Effective Long-Wave Infrared Detector Material Based on Graphene@PtSe2/HfSe2 Bidirectional Heterostructure: A First-Principles Study". Crystals 12, n.º 9 (2 de septiembre de 2022): 1244. http://dx.doi.org/10.3390/cryst12091244.
Texto completoWan, Li-Kai, Yi-Xuan Xue, Jin-Wu Jiang y Harold S. Park. "Machine learning accelerated search of the strongest graphene/h-BN interface with designed fracture properties". Journal of Applied Physics 133, n.º 2 (14 de enero de 2023): 024302. http://dx.doi.org/10.1063/5.0131576.
Texto completoLiu, Xiaolong y Mark C. Hersam. "Borophene-graphene heterostructures". Science Advances 5, n.º 10 (octubre de 2019): eaax6444. http://dx.doi.org/10.1126/sciadv.aax6444.
Texto completoМалевская, А. В., Н. Д. Ильинская y В. М. Андреев. "Разработка методов жидкостного травления разделительной меза-структуры при создании каскадных солнечных элементов". Письма в журнал технической физики 45, n.º 24 (2019): 14. http://dx.doi.org/10.21883/pjtf.2019.24.48795.17953.
Texto completoДавыдов, С. Ю. "Простые модели латеральных гетероструктур". Физика твердого тела 60, n.º 7 (2018): 1389. http://dx.doi.org/10.21883/ftt.2018.07.46129.015.
Texto completoLi, Xufan, Ming-Wei Lin, Junhao Lin, Bing Huang, Alexander A. Puretzky, Cheng Ma, Kai Wang et al. "Two-dimensional GaSe/MoSe2misfit bilayer heterojunctions by van der Waals epitaxy". Science Advances 2, n.º 4 (abril de 2016): e1501882. http://dx.doi.org/10.1126/sciadv.1501882.
Texto completoDavydov, S. Yu. "Simple Models of Lateral Heterostructures". Physics of the Solid State 60, n.º 7 (julio de 2018): 1405–12. http://dx.doi.org/10.1134/s1063783418070089.
Texto completoWang, Zixuan, Wenshuo Xu, Benxuan Li, Qiaoyan Hao, Di Wu, Dianyu Qi, Haibo Gan, Junpeng Xie, Guo Hong y Wenjing Zhang. "Selective Chemical Vapor Deposition Growth of WS2/MoS2 Vertical and Lateral Heterostructures on Gold Foils". Nanomaterials 12, n.º 10 (16 de mayo de 2022): 1696. http://dx.doi.org/10.3390/nano12101696.
Texto completoAlharbi, Safia Abdullah R., Kazi Jannatul Tasnim y Ming Yu. "The first-principles study of structural and electronic properties of two-dimensional SiC/GeC lateral polar heterostructures". Journal of Applied Physics 132, n.º 18 (14 de noviembre de 2022): 184301. http://dx.doi.org/10.1063/5.0127579.
Texto completoTesis sobre el tema "Lateral heterostructures"
Vallis, Stuart Lawrie. "Lateral and longitudinal surface superlattices on shallow GaAs heterostructures". Thesis, University of Glasgow, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320844.
Texto completoLai, Andrew P. (Andrew Pan). "Investigation of lateral gated quantum devices in Si/SiGe heterostructures". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/83775.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 73-75).
Quantum dots in Si/SiGe have long spin decoherence times, due to the low density of nuclear spins and weak coupling between nuclear and electronic spins. Because of this, they are excellent candidates for use as solid state qubits. The initial approach towards creating controllable Si/SiGe quantum dots was to fabricate them in delta doped heterostructures. We provide evidence that the delta doping layer in these heterostructures provides a parallel conduction path, which prevents one from creating controllable quantum dots. Instead, it may be more favorable to supply electrons in the 2DEG through capactive gating, instead of a delta doping layer. We therefore discuss efforts to fabricate Si/SiGe quantum dots from undoped heterostructures and the difficulties encountered. A new method for fabricating ohmics in undoped heterostructures is discussed. We also discuss parallel conduction which occurs in the Si cap layer of these undoped heterostructures, which appears to be a major obstacle towards achieving workable devices in undoped Si/SiGe heterostructures.
by Andrew P. Lai.
S.M.
Deborde, Jean-Laurent. "Lateral electron tunneling spectroscopy between low-dimensional electron systems in GaAs,AlGaAs heterostructures". Tönning Lübeck Marburg Der Andere Verl, 2009. http://d-nb.info/995773491/04.
Texto completoMaharjan, Nikesh. "Electronic band engineering of Transition metal dichalcogenides: First Principles Calculation". OpenSIUC, 2015. https://opensiuc.lib.siu.edu/theses/1661.
Texto completoGraf, Davy. "Electrons in reduced dimensions : from finite lateral superlattices in AlGaAs heterostructures to few-layer graphene /". Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17241.
Texto completoBradford, Jonathan. "Growth and characterisation of two-dimensional materials and their heterostructures on sic". Thesis, Queensland University of Technology, 2019. https://eprints.qut.edu.au/134400/1/Jonathan_Bradford_Thesis.pdf.
Texto completoSerrano, richaud Elisa. "Modelling electronic and optical properties of 2D heterostructures". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP121.
Texto completoGraphene (Gr) and hexagonal boron nitride (hBN) have a similar lattice parameter (~1.5% mismatch) and different properties , Gr is a metal known by its high conductivity and hBN is a large gap insulator ~6eV) with a strong UV emission. Due to these two remarks, they are perfect candidates to be stacked side-by-side in a lateral heterostructures instead of one of the top of the other in a more common vertical heterostructure. In this thesis I will be interested at modelling the electronic and optical properties of lateral heterostructures composed of successive armchair graphene and boron nitride nanoribbons (AGBN). However, during the synthesis of this kind of heterostructures defects, such as roughness or non-hexagonal defect, may appear at the interface affecting to the properties of AGBN.In the first part of the thesis, will combine ab-initio techniques such a density functional theory (DFT) and a perturbative tight-binding (TB) modem to study the opposite and complementary sensitivity of the gapwidth of isolated Gr and hBN armchair nanoribbons (AGNR and ABNNR) upon different stimuli.In the next parts I will present the electronic structure of AGBN carry out with DFT and optical spec-trum calculated by GW and the Bethe-Salpeter equation (BSE). I will revise from the general features, like the band structure, to explaining in detail the role of each material and the characteristic confining of the exciton in the Gr part of the heterostructures.Parallel to this study, I will parametrise a semi-empirical TB model and set its limits of validity to de-scribe the absorption spectrum of AGBN in the independent-particle approximation. Therefore, I have to set a correspondence between excitonic peaks on the BSE absorption spectra and transitions in IP spec-tra will allow us to estimate excitonic effects from the TB IP spectra. In particular, this approach will be used in the last part of the thesis to finally characterise the impact of weak roughness at the interface or non-hexagonal defects like Stone-Wales or divacancies
Soucail, Bernard. "Contributions a l'etude des changements de dimensionnalite induits par des champs exterieurs ou par un confinement lateral dans les heterostructures de semiconducteurs iii-v". Paris 6, 1990. http://www.theses.fr/1990PA066693.
Texto completoLee, Sunyoung. "Distributed effects in power transistors and the optimization of the layouts of AlGaN/GaN HFETs". Columbus, Ohio : Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1149095133.
Texto completoPiotrowicz, Pawel Jan Andrzej. "Fabrication and measurement of laterally confined double barrier heterostructures with wide wells". Thesis, University of Cambridge, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.627421.
Texto completoLibros sobre el tema "Lateral heterostructures"
Horing, Norman J. Morgenstern. Retarded Green’s Functions. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198791942.003.0005.
Texto completoCapítulos de libros sobre el tema "Lateral heterostructures"
Lima, A. P., C. Miskys, O. Ambacher, M. Stutzmann, R. Dimitrov, V. Tilak, M. J. Murphy y L. F. Eastman. "AlGaN/GaN lateral polarity heterostructures". En Springer Proceedings in Physics, 303–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_139.
Texto completoWu, Yuh-Renn, Madhusudan Singh y Jasprit Singh. "Lateral and Vertical Charge Transport in Polar Nitride Heterostructures". En Polarization Effects in Semiconductors, 111–59. Boston, MA: Springer US, 2008. http://dx.doi.org/10.1007/978-0-387-68319-5_3.
Texto completoJeschke, Sabina, Olivier Pfeiffer, Joerg Schulze y Marc Wilke. "Crystalline Ge1−x Sn x Heterostructures in Lateral High-Speed Devices". En Automation, Communication and Cybernetics in Science and Engineering 2009/2010, 597–608. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16208-4_52.
Texto completoKurtz, E., M. Schmidt, B. Dal Don, S. Wachter, D. Litvinov, D. Gerthsen, H. Kalt y C. Klingshirn. "Properties of CdSe/ZnSe based quantum heterostructures with and without lateral confinement potentials". En Springer Proceedings in Physics, 391–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_181.
Texto completoHeinecke, Harald. "Concepts for Lateral III–V Heterostructures Fabricated by Surface Selective Growth in MOMBE". En Low Dimensional Structures Prepared by Epitaxial Growth or Regrowth on Patterned Substrates, 229–42. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0341-1_21.
Texto completoZytkiewicz, Z. R. y D. Dobosz. "Influence of Si Doping on Epitaxial Lateral Overgrowth of GaAs". En Heterostructure Epitaxy and Devices — HEAD’97, 71–74. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5012-5_9.
Texto completoMimila-Arroyo, J. y K. Somogyi. "Optical Gain Improvement of GaAs Lateral Photoresistive Elements by Sulphur Passivation of the Surface". En Heterostructure Epitaxy and Devices — HEAD’97, 251–54. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-5012-5_48.
Texto completoBrinkop, F., C. Dahl, J. P. Kotthaus, G. Weimann y W. Schlapp. "Microwave Conductivity of Laterally Confined Electron Systems in AlGaAs/GaAs Heterostructures". En Springer Series in Solid-State Sciences, 352–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84408-9_51.
Texto completoBakhtatou, Ali y Ali Hamidani. "Design of a New Photo-Diode Based on (α-PbO)/(α-SnO) Lateral Heterostructure". En Springer Proceedings in Materials, 133–41. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1916-7_14.
Texto completoTagawa, Tomoya y Shin-ichi Katayama. "Plasmons in laterally density modulated 2D electron gas in shallow etched single-heterostructures". En Springer Proceedings in Physics, 481–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59484-7_225.
Texto completoActas de conferencias sobre el tema "Lateral heterostructures"
Zhong, Yutong, Hanyuan Ma, Qian Lv, Yongzhuo Li, Jiabin Feng, Chen Li, Jialu Xu, Chenxin Yu, Ruitao Lv y Cun-Zheng Ning. "Low-voltage Injection-free Electroluminescence Device based on a Monolayer MoSe2/WSe2 Lateral Heterostructure". En CLEO: Science and Innovations, SF2R.5. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_si.2024.sf2r.5.
Texto completoMalhotra, Yakshita, Yifan Shen, Yuanpeng Wu, Josey Hanish, Yifu Guo, Yixin Xiao, Kai Sun, Theodore Norris y Zetian Mi. "Carrier Transfer From C-Plane to Semipolar-Plane Regions in a Red-Emitting InGaN/GaN Heterostructure". En CLEO: Applications and Technology, JTu2A.126. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.126.
Texto completoTaghinejad, Hossein y Ali Adibi. "Ultra-miniaturized lateral heterostructures in 2D semiconductors". En Active Photonic Platforms XIII, editado por Ganapathi S. Subramania y Stavroula Foteinopoulou. SPIE, 2021. http://dx.doi.org/10.1117/12.2593849.
Texto completoMarian, D., E. Dib, T. Cusati, A. Fortunelli, G. Iannaccone y G. Fiori. "Two-dimensional transistors based on MoS2 lateral heterostructures". En 2016 IEEE International Electron Devices Meeting (IEDM). IEEE, 2016. http://dx.doi.org/10.1109/iedm.2016.7838413.
Texto completoVoronine, Dmitri V. y Sharad Ambardar. "Nanophotonics of coupled emitters in atomically thin lateral heterostructures". En Active Photonic Platforms XII, editado por Ganapathi S. Subramania y Stavroula Foteinopoulou. SPIE, 2020. http://dx.doi.org/10.1117/12.2569073.
Texto completoJeschke, Sabina, Olivier Pfeiffer, Joerg Schulze y Marc Wilke. "Crystalline Ge1-xSnx Heterostructures in Lateral High-Speed Devices". En 2010 Fourth International Conference on Quantum, Nano and Micro Technologies (ICQNM). IEEE, 2010. http://dx.doi.org/10.1109/icqnm.2010.17.
Texto completoFontein, P. F., P. Hendriks, J. Wolter, A. Kucernak, R. Peat y D. E. Williams. "Topography Of GaAs/AlgaAs Heterostructures Using The Lateral Photo Effect". En 1988 International Congress on Optical Science and Engineering. SPIE, 1989. http://dx.doi.org/10.1117/12.950344.
Texto completoHorst, S., S. W. Koch, G. Blume, G. Weiser, W. Ruhle, S. R. Johnson, J. B. Wang et al. "Strong Lateral Confinement in Ga(AsSb)/GaAs/(AlGa)As Heterostructures". En CLEO '07. 2007 Conference on Lasers and Electro-Optics. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452599.
Texto completoOlbrich, P., R. Ravash, T. Feil, S. D. Danilov, J. Allerdings, D. Weiss, E. L. Ivchenko y S. D. Ganichev. "Terahertz photocurrents in heterostructures with one-dimensional lateral periodic potential". En 2008 33rd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz 2008). IEEE, 2008. http://dx.doi.org/10.1109/icimw.2008.4665696.
Texto completoKobayashi, Y., T. Saito, H. Tokuda y M. Kuzuhara. "Electrical charaterization of lateral tunnel junctions fabricated on AlGaN/GaN heterostructures". En 2013 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK). IEEE, 2013. http://dx.doi.org/10.1109/imfedk.2013.6602242.
Texto completoInformes sobre el tema "Lateral heterostructures"
Tsui, D. C. Electronic Processes in Heterostructures, Strained-Layer Materials, and Laterally Patterned Structures. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1994. http://dx.doi.org/10.21236/ada294970.
Texto completo