Artículos de revistas sobre el tema "Lasers interbandes en cascade"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Lasers interbandes en cascade.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Lasers interbandes en cascade".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Meyer, Jerry, William Bewley, Chadwick Canedy, Chul Kim, Mijin Kim, Charles Merritt y Igor Vurgaftman. "The Interband Cascade Laser". Photonics 7, n.º 3 (15 de septiembre de 2020): 75. http://dx.doi.org/10.3390/photonics7030075.

Texto completo
Resumen
We review the history, development, design principles, experimental operating characteristics, and specialized architectures of interband cascade lasers for the mid-wave infrared spectral region. We discuss the present understanding of the mechanisms limiting the ICL performance and provide a perspective on the potential for future improvements. Such device properties as the threshold current and power densities, continuous-wave output power, and wall-plug efficiency are compared with those of the quantum cascade laser. Newer device classes such as ICL frequency combs, interband cascade vertical-cavity surface-emitting lasers, interband cascade LEDs, interband cascade detectors, and integrated ICLs are reviewed for the first time.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ning, Chao, Tian Yu, Shuman Liu, Jinchuan Zhang, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Yuan Li y Fengqi Liu. "Interband cascade lasers with short electron injector". Chinese Optics Letters 20, n.º 2 (2022): 022501. http://dx.doi.org/10.3788/col202220.022501.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Horiuchi, Noriaki. "Interband cascade lasers". Nature Photonics 9, n.º 8 (30 de julio de 2015): 481. http://dx.doi.org/10.1038/nphoton.2015.147.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Vurgaftman, I., R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim et al. "Interband cascade lasers". Journal of Physics D: Applied Physics 48, n.º 12 (11 de marzo de 2015): 123001. http://dx.doi.org/10.1088/0022-3727/48/12/123001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ryczko, Krzysztof y Grzegorz Sęk. "Towards unstrained interband cascade lasers". Applied Physics Express 11, n.º 1 (4 de diciembre de 2017): 012703. http://dx.doi.org/10.7567/apex.11.012703.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Massengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins y J. F. Klem. "Long wavelength interband cascade lasers". Applied Physics Letters 120, n.º 9 (28 de febrero de 2022): 091105. http://dx.doi.org/10.1063/5.0084565.

Texto completo
Resumen
InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2 at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2 μm, which is the longest wavelength achieved for III–V interband lasers.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Yang, Rui Q., Lu Li, Wenxiang Huang, S. M. Shazzad Rassel, James A. Gupta, Andrew Bezinger, Xiaohua Wu, S. Ghasem Razavipour y Geof C. Aers. "InAs-Based Interband Cascade Lasers". IEEE Journal of Selected Topics in Quantum Electronics 25, n.º 6 (noviembre de 2019): 1–8. http://dx.doi.org/10.1109/jstqe.2019.2916923.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kim, M., C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman y J. R. Meyer. "Room temperature interband cascade lasers". Physics Procedia 3, n.º 2 (enero de 2010): 1195–200. http://dx.doi.org/10.1016/j.phpro.2010.01.162.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Yu, Tian, Chao Ning, Ruixuan Sun, Shu-Man Liu, Jinchuan Zhang, Junqi Liu, Lijun Wang et al. "Strain mapping in interband cascade lasers". AIP Advances 12, n.º 1 (1 de enero de 2022): 015027. http://dx.doi.org/10.1063/5.0079193.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Holzbauer, Martin, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Johannes Koeth y Gottfried Strasser. "Substrate-emitting ring interband cascade lasers". Applied Physics Letters 111, n.º 17 (23 de octubre de 2017): 171101. http://dx.doi.org/10.1063/1.4989514.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Trofimov, I. E., C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. L. Merritt, I. Vurgaftman, J. R. Meyer y L. T. Le. "Interband cascade lasers with long lifetimes". Applied Optics 54, n.º 32 (4 de noviembre de 2015): 9441. http://dx.doi.org/10.1364/ao.54.009441.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Bradshaw, J. L., J. D. Bruno, J. T. Pham, D. E. Wortman y Rui Q. Yang. "Midinfrared type-II interband cascade lasers". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 18, n.º 3 (2000): 1628. http://dx.doi.org/10.1116/1.591441.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Yang, Rui Q., J. D. Bruno, J. L. Bradshaw, J. T. Pham y D. E. Wortman. "Interband cascade lasers: progress and challenges". Physica E: Low-dimensional Systems and Nanostructures 7, n.º 1-2 (abril de 2000): 69–75. http://dx.doi.org/10.1016/s1386-9477(99)00280-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Jiang, Yuchao, Lu Li, Zhaobing Tian, Hao Ye, Lihua Zhao, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Matthew B. Johnson y Kamjou Mansour. "Electrically widely tunable interband cascade lasers". Journal of Applied Physics 115, n.º 11 (21 de marzo de 2014): 113101. http://dx.doi.org/10.1063/1.4865941.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Ryczko, Krzysztof, Janusz Andrzejewski y Grzegorz Sęk. "Towards Interband Cascade lasers on InP Substrate". Materials 15, n.º 1 (22 de diciembre de 2021): 60. http://dx.doi.org/10.3390/ma15010060.

Texto completo
Resumen
In this study, we propose designs of an interband cascade laser (ICL) active region able to emit in the application-relevant mid infrared (MIR) spectral range and to be grown on an InP substrate. This is a long-sought solution as it promises a combination of ICL advantages with mature and cost-effective epitaxial technology of fabricating materials and devices with high structural and optical quality, when compared to standard approaches of growing ICLs on GaSb or InAs substrates. Therefore, we theoretically investigate a family of type II, “W”-shaped quantum wells made of InGaAs/InAs/GaAsSb with different barriers, for a range of compositions assuring the strain levels acceptable from the growth point of view. The calculated band structure within the 8-band k·p approximation showed that the inclusion of a thin InAs layer into such a type II system brings a useful additional tuning knob to tailor the electronic confined states, optical transitions’ energy and their intensity. Eventually, it allows achieving the emission wavelengths from below 3 to at least 4.6 μm, while still keeping reasonably high gain when compared to the state-of-the-art ICLs. We demonstrate a good tunability of both the emission wavelength and the optical transitions’ oscillator strength, which are competitive with other approaches in the MIR. This is an original solution which has not been demonstrated so far experimentally. Such InP-based interband cascade lasers are of crucial application importance, particularly for the optical gas sensing.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Meyer, Jerry R., Chul Soo Kim, Mijin Kim, Chadwick L. Canedy, Charles D. Merritt, William W. Bewley y Igor Vurgaftman. "Interband Cascade Photonic Integrated Circuits on Native III-V Chip". Sensors 21, n.º 2 (16 de enero de 2021): 599. http://dx.doi.org/10.3390/s21020599.

Texto completo
Resumen
We describe how a midwave infrared photonic integrated circuit (PIC) that combines lasers, detectors, passive waveguides, and other optical elements may be constructed on the native GaSb substrate of an interband cascade laser (ICL) structure. The active and passive building blocks may be used, for example, to fabricate an on-chip chemical detection system with a passive sensing waveguide that evanescently couples to an ambient sample gas. A variety of highly compact architectures are described, some of which incorporate both the sensing waveguide and detector into a laser cavity defined by two high-reflectivity cleaved facets. We also describe an edge-emitting laser configuration that optimizes stability by minimizing parasitic feedback from external optical elements, and which can potentially operate with lower drive power than any mid-IR laser now available. While ICL-based PICs processed on GaSb serve to illustrate the various configurations, many of the proposed concepts apply equally to quantum-cascade-laser (QCL)-based PICs processed on InP, and PICs that integrate III-V lasers and detectors on silicon. With mature processing, it should become possible to mass-produce hundreds of individual PICs on the same chip which, when singulated, will realize chemical sensing by an extremely compact and inexpensive package.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Zhang Yi, 张一, 杨成奥 Yang Cheng''ao, 尚金铭 Shang Jinming, 陈益航 Chen Yihang, 王天放 Wang Tianfang, 张宇 Zhang Yu, 徐应强 Xu Yingqiang, 刘冰 Liu Bing y 牛智川 Niu Zhichuan. "Research Progress of Semiconductor Interband Cascade Lasers". Acta Optica Sinica 41, n.º 1 (2021): 0114004. http://dx.doi.org/10.3788/aos202141.0114004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Chen Junjing, 陈君景, 王一丁 Wang Yiding y 曹峰 Cao Feng. "Mid-Infrared Type-II Interband Cascade Lasers". Laser & Optoelectronics Progress 45, n.º 3 (2008): 19–24. http://dx.doi.org/10.3788/lop20084503.0019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Soibel, A., M. W. Wright, W. Farr, S. Keo, C. Hill, R. Q. Yang y H. C. Liu. "High-speed operation of interband cascade lasers". Electronics Letters 45, n.º 5 (2009): 264. http://dx.doi.org/10.1049/el:20090079.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Vurgaftman, Igor, William W. Bewley, Chadwick L. Canedy, Chul Soo Kim, Mijin Kim, J. Ryan Lindle, Charles D. Merritt, Joshua Abell y Jerry R. Meyer. "Mid-IR Type-II Interband Cascade Lasers". IEEE Journal of Selected Topics in Quantum Electronics 17, n.º 5 (septiembre de 2011): 1435–44. http://dx.doi.org/10.1109/jstqe.2011.2114331.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Yang, R. Q., J. L. Bradshaw, J. D. Bruno, J. T. Pham y D. E. Wortman. "Mid-infrared type-II interband cascade lasers". IEEE Journal of Quantum Electronics 38, n.º 6 (junio de 2002): 559–68. http://dx.doi.org/10.1109/jqe.2002.1005406.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Yang, R. Q., C.-H. Lin, B. H. Yang, D. Zhang, S. J. Murry, S. S. Pei, C. L. Felix et al. "High Power Mid-IR Interband Cascade Lasers". Optics and Photonics News 8, n.º 12 (1 de diciembre de 1997): 26. http://dx.doi.org/10.1364/opn.8.12.000026.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Li, Lu, Lihua Zhao, Yuchao Jiang, Rui Q. Yang, Joel C. Keay, Tetsuya D. Mishima, Michael B. Santos y Matthew B. Johnson. "Single-waveguide dual-wavelength interband cascade lasers". Applied Physics Letters 101, n.º 17 (22 de octubre de 2012): 171118. http://dx.doi.org/10.1063/1.4764910.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Dallner, Matthias, Julian Scheuermann, Lars Nähle, Marc Fischer, Johannes Koeth, Sven Höfling y Martin Kamp. "InAs-based distributed feedback interband cascade lasers". Applied Physics Letters 107, n.º 18 (2 de noviembre de 2015): 181105. http://dx.doi.org/10.1063/1.4935076.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Deng, Yu, Bin-Bin Zhao, Xing-Guang Wang y Cheng Wang. "Narrow linewidth characteristics of interband cascade lasers". Applied Physics Letters 116, n.º 20 (18 de mayo de 2020): 201101. http://dx.doi.org/10.1063/5.0006823.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ryczko, Krzysztof, Agata Zielińska y Grzegorz Sęk. "Interband Cascade Active Region with Ultra-Broad Gain in the Mid-Infrared Range". Materials 14, n.º 5 (27 de febrero de 2021): 1112. http://dx.doi.org/10.3390/ma14051112.

Texto completo
Resumen
The optical gain spectrum has been investigated theoretically for various designs of active region based on InAs/GaInSb quantum wells—i.e., a type II material system employable in interband cascade lasers (ICLs) or optical amplifiers operating in the mid-infrared spectral range. The electronic properties and optical responses have been calculated using the eight-band k·p theory, including strain and external electric fields, to simulate the realistic conditions occurring in operational devices. The results show that intentionally introducing a slight nonuniformity between two subsequent stages of a cascaded device via the properly engineered modification of the type II quantum wells of the active area offers the possibility to significantly broaden the gain function. A −3 dB gain width of 1 µm can be reached in the 3–5 µm range, which is almost an order of magnitude larger than that of any previously reported ICLs. This is a property strongly demanded in many gas-sensing or free-space communication applications, and it opens a way for a new generation of devices in the mid-infrared range, such as broadly tunable single-mode lasers, mode-locked lasers for laser-based spectrometers, and optical amplifiers or superluminescent diodes which do not exist beyond 3 µm yet.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

NING Chao, 宁超, 孙瑞轩 SUN Ruixuan, 于天 YU Tian, 刘舒曼 LIU Shuman, 张锦川 ZHANG Jinchuan, 卓宁 ZHUO Ning, 王利军 WANG Lijun et al. "带间级联激光器电子注入区优化研究(特邀)". ACTA PHOTONICA SINICA 51, n.º 2 (2022): 0251208. http://dx.doi.org/10.3788/gzxb20225102.0251208.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Fordyce, J. A. M., D. A. Diaz-Thomas, L. O'Faolain, A. N. Baranov, T. Piwonski y L. Cerutti. "Single-mode interband cascade laser with a slotted waveguide". Applied Physics Letters 121, n.º 21 (21 de noviembre de 2022): 211102. http://dx.doi.org/10.1063/5.0120460.

Texto completo
Resumen
The design of a single-mode interband cascade laser (ICL) using a slotted waveguide is presented. This technique was explored as an inexpensive alternative to distributed feedback lasers since standard photolithography can be used in fabrication and complex techniques, such as e-beam lithography, re-growth steps, and/or metal gratings, can be avoided. The design of slotted waveguides must be carefully simulated before fabrication to ensure the efficacy of the photolithography masks with each ICL growth. Limitations and the behavior of key design parameters are discussed. Single-mode emission was achieved for certain temperature and injected current conditions, validating the operation of an Sb based slotted laser. The slotted ICLs were emitting from a single longitudinal mode at 3.5 μm and 2 mW of power per facet output at 20 °C with threshold currents around 80 mA.
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Biryukov, A. A., B. N. Zvonkov, S. M. Nekorkin, V. Ya Aleshkin, V. I. Gavrilenko, A. A. Dubinov, K. V. Marem’yanin et al. "Study of interband cascade lasers with tunneling transition". Bulletin of the Russian Academy of Sciences: Physics 71, n.º 1 (enero de 2007): 96–99. http://dx.doi.org/10.3103/s1062873807010248.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Weih, Robert, Adam Bauer, Martin Kamp y Sven Höfling. "Interband cascade lasers with AlGaAsSb bulk cladding layers". Optical Materials Express 3, n.º 10 (6 de septiembre de 2013): 1624. http://dx.doi.org/10.1364/ome.3.001624.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Meyer, J. R., I. Vurgaftman, R. Q. Yang y L. R. Ram-Mohan. "Type-II and type-I interband cascade lasers". Electronics Letters 32, n.º 1 (1996): 45. http://dx.doi.org/10.1049/el:19960064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Lin, Yuzhe, Lu Li, Wenxiang Huang, Rui Q. Yang, James A. Gupta y Wanhua Zheng. "Quasi-Fermi Level Pinning in Interband Cascade Lasers". IEEE Journal of Quantum Electronics 56, n.º 4 (agosto de 2020): 1–10. http://dx.doi.org/10.1109/jqe.2020.3003081.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Myers, Tanya L., Bret D. Cannon, Carolyn S. Brauer, Chadwick L. Canedy, Chul Soo Kim, Mijin Kim, Charles D. Merritt, William W. Bewley, Igor Vurgaftman y Jerry R. Meyer. "Gamma irradiation of Fabry–Perot interband cascade lasers". Optical Engineering 57, n.º 01 (20 de septiembre de 2017): 1. http://dx.doi.org/10.1117/1.oe.57.1.011016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Jiang, Yuchao, Lu Li, Rui Q. Yang, James A. Gupta, Geof C. Aers, Emmanuel Dupont, Jean-Marc Baribeau, Xiaohua Wu y Matthew B. Johnson. "Type-I interband cascade lasers near 3.2 μm". Applied Physics Letters 106, n.º 4 (26 de enero de 2015): 041117. http://dx.doi.org/10.1063/1.4907326.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Borri, Simone, Mario Siciliani de Cumis, Silvia Viciani, Francesco D’Amato y Paolo De Natale. "Unveiling quantum-limited operation of interband cascade lasers". APL Photonics 5, n.º 3 (1 de marzo de 2020): 036101. http://dx.doi.org/10.1063/1.5139483.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Canedy, C. L., W. W. Bewley, C. S. Kim, M. Kim, J. R. Lindle, I. Vurgaftman y J. R. Meyer. "cw midinfrared “W” diode and interband cascade lasers". Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 24, n.º 3 (2006): 1613. http://dx.doi.org/10.1116/1.2192533.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Nähle, L., P. Fuchs, M. Fischer, J. Koeth, A. Bauer, M. Dallner, F. Langer, S. Höfling y A. Forchel. "Mid infrared interband cascade lasers for sensing applications". Applied Physics B 100, n.º 2 (6 de febrero de 2010): 275–78. http://dx.doi.org/10.1007/s00340-010-3899-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Zhao, Xuyi, Chunfang Cao, Antian Du, Wenfu Yu, Shixian Han, Ruotao Liu, Yuanyu Chen et al. "High Performance Interband Cascade Lasers With AlGaAsSb Cladding Layers". IEEE Photonics Technology Letters 34, n.º 5 (1 de marzo de 2022): 291–94. http://dx.doi.org/10.1109/lpt.2022.3153334.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Zhaobing Tian, R. Q. Yang, T. D. Mishima, M. B. Santos y M. B. Johnson. "Plasmon-Waveguide Interband Cascade Lasers Near 7.5 $\mu$m". IEEE Photonics Technology Letters 21, n.º 21 (noviembre de 2009): 1588–90. http://dx.doi.org/10.1109/lpt.2009.2030686.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Bradshaw, J. L., J. D. Bruno, D. E. Wortman, R. Q. Yang y J. T. Pham. "Continuous wave operation of type-II interband cascade lasers". IEE Proceedings - Optoelectronics 147, n.º 3 (1 de junio de 2000): 177–80. http://dx.doi.org/10.1049/ip-opt:20000299.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Sterczewski, Lukasz A., Jonas Westberg, Mahmood Bagheri, Clifford Frez, Igor Vurgaftman, Chadwick L. Canedy, William W. Bewley et al. "Mid-infrared dual-comb spectroscopy with interband cascade lasers". Optics Letters 44, n.º 8 (15 de abril de 2019): 2113. http://dx.doi.org/10.1364/ol.44.002113.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Mansour, K., Y. Qiu, C. J. Hill, A. Soibel y R. Q. Yang. "Mid-infrared interband cascade lasers at thermoelectric cooler temperatures". Electronics Letters 42, n.º 18 (2006): 1034. http://dx.doi.org/10.1049/el:20062442.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Du Zhenhui, 杜振辉, 韩瑞炎 Han Ruiyan, 王晓雨 Wang Xiaoyu, 王拴棵 Wang Shuangke, 孟硕 Mengshuo y 李金义 Li Jinyi. "Interband Cascade Lasers Based Trace Gas Sensing: A Review". Chinese Journal of Lasers 45, n.º 9 (2018): 0911006. http://dx.doi.org/10.3788/cjl201845.0911006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Scheuermann, Julian, Robert Weih, Michael von Edlinger, Lars Nähle, Marc Fischer, Johannes Koeth, Martin Kamp y Sven Höfling. "Single-mode interband cascade lasers emitting below 2.8 μm". Applied Physics Letters 106, n.º 16 (20 de abril de 2015): 161103. http://dx.doi.org/10.1063/1.4918985.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Jiang, Yuchao, Lu Li, Hao Ye, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Matthew B. Johnson, David Jui-Yang Feng y Fow-Sen Choa. "InAs-Based Single-Mode Distributed Feedback Interband Cascade Lasers". IEEE Journal of Quantum Electronics 51, n.º 9 (septiembre de 2015): 1–7. http://dx.doi.org/10.1109/jqe.2015.2470534.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Zuowei Yin, Yuchao Jiang, Zhaobing Tian, Rui Q. Yang, T. D. Mishima, M. B. Santos y M. B. Johnson. "Far-Field Patterns of Plasmon Waveguide Interband Cascade Lasers". IEEE Journal of Quantum Electronics 47, n.º 11 (noviembre de 2011): 1414–19. http://dx.doi.org/10.1109/jqe.2011.2168812.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Ryczko, K. y G. Sęk. "Polarization-independent gain in mid-infrared interband cascade lasers". AIP Advances 6, n.º 11 (noviembre de 2016): 115020. http://dx.doi.org/10.1063/1.4968190.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Meyer, Jerry. "Special Section Guest Editorial: Quantum and Interband Cascade Lasers". Optical Engineering 49, n.º 11 (1 de noviembre de 2010): 111101. http://dx.doi.org/10.1117/1.3512992.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Hill, Cory J., Baohua Yang y Rui Q. Yang. "Low-threshold interband cascade lasers operating above room temperature". Physica E: Low-dimensional Systems and Nanostructures 20, n.º 3-4 (enero de 2004): 486–90. http://dx.doi.org/10.1016/j.physe.2003.08.064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Canedy, C. L., C. S. Kim, M. Kim, D. C. Larrabee, J. A. Nolde, W. W. Bewley, I. Vurgaftman y J. R. Meyer. "High-power, narrow-ridge, mid-infrared interband cascade lasers". Journal of Crystal Growth 301-302 (abril de 2007): 931–34. http://dx.doi.org/10.1016/j.jcrysgro.2006.11.127.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía