Artículos de revistas sobre el tema "Laser cooling and trapping"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Laser cooling and trapping.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Laser cooling and trapping".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Stenholm, S. "Laser cooling and trapping". European Journal of Physics 9, n.º 4 (1 de octubre de 1988): 242–49. http://dx.doi.org/10.1088/0143-0807/9/4/001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Vredenbregt, E. J. D. y K. A. H. van Leeuwen. "Laser cooling and trapping visualized". American Journal of Physics 71, n.º 8 (agosto de 2003): 760–65. http://dx.doi.org/10.1119/1.1578063.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

McCarron, Daniel. "Laser cooling and trapping molecules". Journal of Physics B: Atomic, Molecular and Optical Physics 51, n.º 21 (18 de octubre de 2018): 212001. http://dx.doi.org/10.1088/1361-6455/aadfba.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Georgescu, Iulia. "From trapping to laser-cooling antihydrogen". Nature Reviews Physics 3, n.º 4 (abril de 2021): 237. http://dx.doi.org/10.1038/s42254-021-00308-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Kenfack, S. C., C. M. Ekengoue, A. J. Fotué, F. C. Fobasso, G. N. Bawe y L. C. Fai. "Laser cooling and trapping of polariton". Computational Condensed Matter 11 (junio de 2017): 47–54. http://dx.doi.org/10.1016/j.cocom.2017.05.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

BJORKHOLM, J., S. CHU, A. CABLE y A. ASHKIN. "Laser cooling and trapping of atoms". Optics News 12, n.º 12 (1 de diciembre de 1986): 18. http://dx.doi.org/10.1364/on.12.12.000018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Lin, Zhong, Kazuko Shimizu, Mingsheng Zhan, Fujio Shimizu y Hiroshi Takuma. "Laser Cooling and Trapping of Li". Japanese Journal of Applied Physics 30, Part 2, No. 7B (15 de julio de 1991): L1324—L1326. http://dx.doi.org/10.1143/jjap.30.l1324.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Foot, C. J. "Laser cooling and trapping of atoms". Contemporary Physics 32, n.º 6 (noviembre de 1991): 369–81. http://dx.doi.org/10.1080/00107519108223712.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Phillips, W. D. "Laser-cooling and trapping neutral atoms". Annales de Physique 10, n.º 6 (1985): 717–32. http://dx.doi.org/10.1051/anphys:01985001006071700.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Metcalf, H. J. y P. van der Straten. "Laser cooling and trapping of atoms". Journal of the Optical Society of America B 20, n.º 5 (1 de mayo de 2003): 887. http://dx.doi.org/10.1364/josab.20.000887.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

SHIMIZU, Kazuko. "Laser Cooling and Trapping of Neutral Atoms." SHINKU 38, n.º 10 (1995): 847–53. http://dx.doi.org/10.3131/jvsj.38.847.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Chen, Tao y Bo Yan. "Laser cooling and trapping of polar molecules". Acta Physica Sinica 68, n.º 4 (2019): 043701. http://dx.doi.org/10.7498/aps.68.20181655.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

GILBERT, SARAH L. y CARL E. WIEMAN. "LASER COOLING AND TRAPPING FOR THE MASSES". Optics and Photonics News 4, n.º 7 (1 de julio de 1993): 8. http://dx.doi.org/10.1364/opn.4.7.000008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Shimizu, Yukiko y Hiroyuki Sasada. "Mechanical force in laser cooling and trapping". American Journal of Physics 66, n.º 11 (noviembre de 1998): 960–67. http://dx.doi.org/10.1119/1.19006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Adams, C. S. y E. Riis. "Laser cooling and trapping of neutral atoms". Progress in Quantum Electronics 21, n.º 1 (enero de 1997): 1–79. http://dx.doi.org/10.1016/s0079-6727(96)00006-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Metcalf, Harold. "Laser cooling and electromagnetic trapping of atoms". Optics News 13, n.º 3 (1 de marzo de 1987): 6. http://dx.doi.org/10.1364/on.13.3.000006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Shimizu, Fujio. "Laser cooling and trapping of neutral atoms". Hyperfine Interactions 74, n.º 1-4 (octubre de 1992): 259–67. http://dx.doi.org/10.1007/bf02398635.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Xu, Xin-ye, Wen-li Wang, Qing-hong Zhou, Guo-hui Li, Hai-ling Jiang, Lin-fang Chen, Jie Ye et al. "Laser cooling and trapping of ytterbium atoms". Frontiers of Physics in China 4, n.º 2 (junio de 2009): 160–64. http://dx.doi.org/10.1007/s11467-009-0033-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Knothe, Christian y Ulrich Oechsner. "Fiber optics for laser cooling and trapping". Optik & Photonik 6, n.º 2 (mayo de 2011): 49–51. http://dx.doi.org/10.1002/opph.201190332.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Nemova, Galina. "Laser Cooling and Trapping of Rare-Earth-Doped Particles". Applied Sciences 12, n.º 8 (8 de abril de 2022): 3777. http://dx.doi.org/10.3390/app12083777.

Texto completo
Resumen
This review focuses on optical refrigeration with the anti-Stokes fluorescence of rare-earth (RE)-doped low-phonon micro- and nanocrystals. Contrary to bulk samples, where the thermal energy is contained in internal vibrational modes (phonons), the thermal energy of nanoparticles is contained in both the translational motion and internal vibrational (phonons) modes of the sample. Much theoretical and experimental research is currently devoted to the laser cooling of nanoparticles. In the majority of the related work, only the translational energy of the particles has been suppressed. In this review, the latest achievements in hybrid optical refrigeration of RE-doped low-phonon micro- and nanoparticles are presented. Hybrid cooling permits the suppression of not only the translational energy of the RE-doped particles, but also their internal vibrational phonon thermal energy. Laser cooling of nanoparticles is not a simple task. Mie resonances can be used to enhance laser cooling with the anti-Stokes fluorescence of nanoparticles made of low-phonon RE-doped solids. Laser-cooled nanoparticles is a promising tool for fundamental quantum-mechanical studies, nonequilibrium thermodynamics, and precision measurements of forces.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kurosu, Takayuki y Fujio Shimizu. "Laser Cooling and Trapping of Calcium and Strontium". Japanese Journal of Applied Physics 29, Part 2, No. 11 (20 de noviembre de 1990): L2127—L2129. http://dx.doi.org/10.1143/jjap.29.l2127.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Shimizu, Fujio, Kazuko Shimizu y Hiroshi Takuma. "Laser cooling and trapping of Ne metastable atoms". Physical Review A 39, n.º 5 (1 de marzo de 1989): 2758–60. http://dx.doi.org/10.1103/physreva.39.2758.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Cohen-Tannoudji, C. "Laser cooling and trapping of neutral atoms: theory". Physics Reports 219, n.º 3-6 (octubre de 1992): 153–64. http://dx.doi.org/10.1016/0370-1573(92)90133-k.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Kurosu, Takayuki y Fujio Shimizu. "Laser Cooling and Trapping of Alkaline Earth Atoms". Japanese Journal of Applied Physics 31, Part 1, No. 3 (15 de marzo de 1992): 908–12. http://dx.doi.org/10.1143/jjap.31.908.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Phillips, William D., John V. Prodan y Harold J. Metcalf. "Laser cooling and electromagnetic trapping of neutral atoms". Journal of the Optical Society of America B 2, n.º 11 (1 de noviembre de 1985): 1751. http://dx.doi.org/10.1364/josab.2.001751.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Katori, Hidetoshi y Fujio Shimizu. "Laser Cooling and Trapping of Argon and Krypton Using Diode Lasers". Japanese Journal of Applied Physics 29, Part 2, No. 11 (20 de noviembre de 1990): L2124—L2126. http://dx.doi.org/10.1143/jjap.29.l2124.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Sun, Hong-Bo, Hironobu Inouye, Yasushi Inouye, Kenji Okamoto y Satoshi Kawata. "Laser-Diode-Tuned Sequential Laser Atom Cooling and Trapping for Nanofabrications". Japanese Journal of Applied Physics 40, Part 2, No. 7A (1 de julio de 2001): L711—L714. http://dx.doi.org/10.1143/jjap.40.l711.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Khabarova, K., S. Strelkin, A. Galyshev, O. Berdasov, A. Gribov, N. Kolachevsky y S. Sluysarev. "Deep Laser Cooling and Trapping of Sr at VNIIFTRI". EPJ Web of Conferences 103 (2015): 06004. http://dx.doi.org/10.1051/epjconf/201510306004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Phillips, William D. "Nobel Lecture: Laser cooling and trapping of neutral atoms". Reviews of Modern Physics 70, n.º 3 (1 de julio de 1998): 721–41. http://dx.doi.org/10.1103/revmodphys.70.721.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Wieman, Carl, Gwenn Flowers y Sarah Gilbert. "Inexpensive laser cooling and trapping experiment for undergraduate laboratories". American Journal of Physics 63, n.º 4 (abril de 1995): 317–30. http://dx.doi.org/10.1119/1.18072.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Ruan, X. L. y M. Kaviany. "Advances in Laser Cooling of Solids". Journal of Heat Transfer 129, n.º 1 (18 de junio de 2006): 3–10. http://dx.doi.org/10.1115/1.2360596.

Texto completo
Resumen
We review the progress on laser cooling of solids. Laser cooling of ion-doped solids and semiconductors is based on the anti-Stokes fluorescence, where the emitted photons have a mean energy higher than that of the absorbed photons. The thermodynamic analysis shows that this cooling process does not violate the second law, and that the achieved efficiency is much lower than the theoretical limit. Laser cooling has experienced rapid progress in rare-earth-ion doped solids in the last decade, with the temperature difference increasing from 0.3to92K. Further improvements can be explored from the perspectives of materials and structures. Also, theories need to be developed, to provide guidance for searching enhanced cooling performance. Theoretical predictions show that semiconductors may be cooled more than ion-doped solids, but no success in bulk cooling has been achieved yet after a few attempts (due to the fluorescence trapping and nonradiative recombination). Possible solutions are discussed, and net cooling is expected to be realized in the near future.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Helmerson, Kristian y William D. Phillips. "Cooling, Trapping and Manipulation of Neutral Atoms and Bose-Einstein Condensates by Electromagnetic Fields". Modern Physics Letters B 14, supp01 (septiembre de 2000): 231–80. http://dx.doi.org/10.1142/s0217984900001567.

Texto completo
Resumen
We give a general discussion of the mechanical effects of light, and of laser cooling and trapping techniques. This is followed by a description of experiments in the manipulation of Bose-Einstein condensates with optical laser pulses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Wieman, Carl E. "Bose–Einstein Condensation in an Ultracold Gas". International Journal of Modern Physics B 11, n.º 28 (10 de noviembre de 1997): 3281–96. http://dx.doi.org/10.1142/s0217979297001581.

Texto completo
Resumen
Bose–Einstein condensation in a gas has now been achieved. Atoms are cooled to the point of condensation using laser cooling and trapping, followed by magnetic trapping and evaporative cooling. These techniques are explained, as well as the techniques by which we observe the cold atom samples. Three different signatures of Bose–Einstein condensation are described. A number of properties of the condensate, including collective excitations, distortions of the wave function by interactions, and the fraction of atoms in the condensate versus temperature, have also been measured.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Vishnyakova, G. A., E. S. Kalganova, D. D. Sukachev, S. A. Fedorov, A. V. Sokolov, A. V. Akimov, N. N. Kolachevsky y V. N. Sorokin. "Two-stage laser cooling and optical trapping of thulium atoms". Laser Physics 24, n.º 7 (13 de junio de 2014): 074018. http://dx.doi.org/10.1088/1054-660x/24/7/074018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Toader, Ovidiu, Sajeev John y Kurt Busch. "Optical trapping, Field enhancement and Laser cooling in photonic crystals". Optics Express 8, n.º 3 (29 de enero de 2001): 217. http://dx.doi.org/10.1364/oe.8.000217.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Mellish, Angela S. y Andrew C. Wilson. "A simple laser cooling and trapping apparatus for undergraduate laboratories". American Journal of Physics 70, n.º 9 (septiembre de 2002): 965–71. http://dx.doi.org/10.1119/1.1477435.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Vilshanskaya, E. V., S. A. Saakyan, V. A. Sautenkov y B. B. Zelener. "The setup for laser cooling and trapping of calcium atoms". Journal of Physics: Conference Series 1147 (enero de 2019): 012097. http://dx.doi.org/10.1088/1742-6596/1147/1/012097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Shao-Kai, Wang, Wang Qiang, Lin Yi-Ge, Wang Min-Ming, Lin Bai-Ke, Zang Er-Jun, Li Tian-Chu y Fang Zhan-Jun. "Cooling and Trapping 88 Sr Atoms with 461 nm Laser". Chinese Physics Letters 26, n.º 9 (septiembre de 2009): 093202. http://dx.doi.org/10.1088/0256-307x/26/9/093202.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Morigi, G., B. Zambon, N. Leinfellner y E. Arimondo. "Scaling laws in velocity-selective coherent-population-trapping laser cooling". Physical Review A 53, n.º 4 (1 de abril de 1996): 2616–26. http://dx.doi.org/10.1103/physreva.53.2616.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Rapol, U. D., A. Krishna, A. Wasan y V. Natarajan. "Laser cooling and trapping of Yb from a thermal source". European Physical Journal D - Atomic, Molecular and Optical Physics 29, n.º 3 (1 de junio de 2004): 409–14. http://dx.doi.org/10.1140/epjd/e2004-00041-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Wang, Hui Bo. "Experiment and Analysis System without Modulation Locked Fiber Grating System". Applied Mechanics and Materials 513-517 (febrero de 2014): 3886–89. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.3886.

Texto completo
Resumen
High stability of semiconductor lasers have been shown useful in many applications areas,[such as optical communication, high-resolution spectroscopy quantum metrology, laser cooling and trapping[. With the rapid development of fiber optic dense wavelength division multiplexing system, we require laser source with high frequency stability in 1.5μm band. In this paper It is clear that temperature, cavity length and injection current have effects on frequency stability of FBG external cavity semiconductor laser by simulation experiments. Besides that, the frequency stabilization system is adjusted. Therefore, the frequency jitter spectra before and after locking are given and the experimental results are analyzed. The results show that after locking laser the typical frequency jitter is significantly improved comparing with frequency fluctuation in the condition of free running.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Guo, J., E. Korsunsky y E. Arimondo. "Laser cooling of Rydberg atoms by velocity-selective coherent population trapping". Quantum and Semiclassical Optics: Journal of the European Optical Society Part B 8, n.º 3 (junio de 1996): 557–69. http://dx.doi.org/10.1088/1355-5111/8/3/018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Korsunsky, E., D. Kosachiov, B. Matisov, Yu Rozhdestvensky, L. Windholz y C. Neureiter. "Quasiclassical analysis of laser cooling by velocity-selective coherent population trapping". Physical Review A 48, n.º 2 (1 de agosto de 1993): 1419–27. http://dx.doi.org/10.1103/physreva.48.1419.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

KWONG, V. H. S. "COOLING AND TRAPPING OF LASER INDUCED MULTIPLY CHARGED IONS OF MOLYBDENUM". Le Journal de Physique Colloques 50, n.º C1 (enero de 1989): C1–413—C1–417. http://dx.doi.org/10.1051/jphyscol:1989149.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Vassen, Wim. "Laser cooling and trapping of metastable helium: towards Bose–Einstein condensation". Comptes Rendus de l'Académie des Sciences - Series IV - Physics 2, n.º 4 (junio de 2001): 613–18. http://dx.doi.org/10.1016/s1296-2147(01)01204-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Liu, Xiaochi, Ning Ru, Junyi Duan, Peter Yun, Minghao Yao y Jifeng Qu. "High-performance coherent population trapping clock based on laser-cooled atoms". Chinese Physics B 31, n.º 4 (1 de marzo de 2022): 043201. http://dx.doi.org/10.1088/1674-1056/ac2d21.

Texto completo
Resumen
We present a coherent population trapping clock system based on laser-cooled 87Rb atoms. The clock consists of a frequency-stabilized CPT interrogation laser and a cooling laser as well as a compact magneto-optical trap, a high-performance microwave synthesizer, and a signal detection system. The resonance signal in the continuous wave regime exhibits an absorption contrast of ∼ 50%. In the Ramsey interrogation method, the linewidth of the central fringe is 31.25 Hz. The system achieves fractional frequency stability of 2.4 × 10 − 11 / τ , which goes down to 1.8 × 10−13 at 20000 s. The results validate that cold atom interrogation can improve the long-term frequency stability of coherent population trapping clocks and holds the potential for developing compact/miniature cold atoms clocks.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Matisov, B. G. y I. E. Mazets. "Limit of laser cooling of atoms by velocity selective coherent population trapping". Journal of Physics B: Atomic, Molecular and Optical Physics 26, n.º 21 (14 de noviembre de 1993): 3795–802. http://dx.doi.org/10.1088/0953-4075/26/21/015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Xu, Liang, Bin Wei, Yong Xia, Lian-Zhong Deng y Jian-Ping Yin. "BaF radical: A promising candidate for laser cooling and magneto-optical trapping". Chinese Physics B 26, n.º 3 (marzo de 2017): 033702. http://dx.doi.org/10.1088/1674-1056/26/3/033702.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Bigelow, N. P. "Low temperature physics without a cryostat: laser cooling and trapping of atoms". Low Temperature Physics 24, n.º 2 (febrero de 1998): 106–13. http://dx.doi.org/10.1063/1.593551.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Zhang, Kong, Jun He y Junmin Wang. "Single-Pass Laser Frequency Conversion to 780.2 nm and 852.3 nm Based on PPMgO:LN Bulk Crystals and Diode-Laser-Seeded Fiber Amplifiers". Applied Sciences 9, n.º 22 (17 de noviembre de 2019): 4942. http://dx.doi.org/10.3390/app9224942.

Texto completo
Resumen
We report the preparation of a 780.2 nm and 852.3 nm laser device based on single-pass periodically poled magnesium-oxide-doped lithium niobate (PPMgO:LN) bulk crystals and diode-laser-seeded fiber amplifiers. First, a single-frequency continuously tunable 780.2 nm laser of more than 600 mW from second-harmonic generation (SHG) by a 1560.5 nm laser can be achieved. Then, a 250 mW light at 852.3 nm is generated and achieves an overall conversion efficiency of 4.1% from sum-frequency generation (SFG) by mixing the 1560.5 nm and 1878.0 nm lasers. The continuously tunable range of 780.2 nm and 852.3 nm are at least 6.8 GHz and 9.2 GHz. By employing this laser system, we can conveniently perform laser cooling, trapping and manipulating both rubidium (Rb) and cesium (Cs) atoms simultaneously. This system has promising applications in a cold atoms Rb-Cs two-component interferemeter and in the formation of the RbCs dimer by the photoassociation of cold Rb and Cs atoms confined in a magneto-optical trap.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía