Literatura académica sobre el tema "Language Representation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Language Representation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Language Representation"
Andrade, Cláudia Braga de. "THE SPECIFICITY OF LANGUAGE IN PSYCHOANALYSIS". Ágora: Estudos em Teoria Psicanalítica 19, n.º 2 (agosto de 2016): 279–94. http://dx.doi.org/10.1590/s1516-14982016002009.
Texto completoRutten, Geert-Jan y Nick Ramsey. "Language Representation". Journal of Neurosurgery 106, n.º 4 (abril de 2007): 726–27. http://dx.doi.org/10.3171/jns.2007.106.4.726.
Texto completoTomasello, Michael. "Language and Representation". Contemporary Psychology: A Journal of Reviews 42, n.º 12 (diciembre de 1997): 1080–83. http://dx.doi.org/10.1037/000637.
Texto completoJing, Chenchen, Yuwei Wu, Xiaoxun Zhang, Yunde Jia y Qi Wu. "Overcoming Language Priors in VQA via Decomposed Linguistic Representations". Proceedings of the AAAI Conference on Artificial Intelligence 34, n.º 07 (3 de abril de 2020): 11181–88. http://dx.doi.org/10.1609/aaai.v34i07.6776.
Texto completoBen-Yami, Hanoch. "Word, Sign and Representation in Descartes". Journal of Early Modern Studies 10, n.º 1 (2021): 29–46. http://dx.doi.org/10.5840/jems20211012.
Texto completo최숙이. "Language as Volition and Representation : Representation of Volition in Language". Journal of japanese Language and Culture ll, n.º 26 (diciembre de 2013): 321–45. http://dx.doi.org/10.17314/jjlc.2013..26.016.
Texto completoNavigli, Roberto, Rexhina Blloshmi y Abelardo Carlos Martínez Lorenzo. "BabelNet Meaning Representation: A Fully Semantic Formalism to Overcome Language Barriers". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 11 (28 de junio de 2022): 12274–79. http://dx.doi.org/10.1609/aaai.v36i11.21490.
Texto completoInozemtsev, V. A. "Deductive logic in solving computer knowledge representation". Izvestiya MGTU MAMI 8, n.º 1-5 (10 de septiembre de 2014): 121–26. http://dx.doi.org/10.17816/2074-0530-67477.
Texto completoGilbert, Stephen B. y Whitman Richards. "The Classification of Representational Forms". Proceedings of the Human Factors and Ergonomics Society Annual Meeting 63, n.º 1 (noviembre de 2019): 2244–48. http://dx.doi.org/10.1177/1071181319631530.
Texto completoMiller, R. A., R. H. Baud, J. R. Scherrer y A. M. Rassinoux. "Modeling Concepts in Medicine for Medical Language Understanding". Methods of Information in Medicine 37, n.º 04/05 (octubre de 1998): 361–72. http://dx.doi.org/10.1055/s-0038-1634561.
Texto completoTesis sobre el tema "Language Representation"
Sukkarieh, Jana Zuheir. "Natural language for knowledge representation". Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620452.
Texto completoWilhelmson, Mika. "Representations of culture in EIL : Cultural representation in Swedish EFL textbooks". Thesis, Högskolan Dalarna, Engelska, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:du-21120.
Texto completoLuebbering, Candice Rae. "The Cartographic Representation of Language: Understanding language map construction and visualizing language diversity". Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/37543.
Texto completoPh. D.
Perfors, Amy (Amy Francesca). "Learnability, representation, and language : a Bayesian approach". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/45601.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 225-243).
Within the metaphor of the "mind as a computation device" that dominates cognitive science, understanding human cognition means understanding learnability not only what (and how) the brain learns, but also what data is available to it from the world. Ideal learnability arguments seek to characterize what knowledge is in theory possible for an ideal reasoner to acquire, which illuminates the path towards understanding what human reasoners actually do acquire. The goal of this thesis is to exploit recent advances in machine learning to revisit three common learnability arguments in language acquisition. By formalizing them in Bayesian terms and evaluating them given realistic, real-world datasets, we achieve insight about what must be assumed about a child's representational capacity, learning mechanism, and cognitive biases. Exploring learnability in the context of an ideal learner but realistic (rather than ideal) datasets enables us to investigate what could be learned in practice rather than noting what is impossible in theory. Understanding how higher-order inductive constraints can themselves be learned permits us to reconsider inferences about innate inductive constraints in a new light. And realizing how a learner who evaluates theories based on a simplicity/goodness-of-fit tradeoff can handle sparse evidence may lead to a new perspective on how humans reason based on the noisy and impoverished data in the world. The learnability arguments I consider all ultimately stem from the impoverishment of the input either because it lacks negative evidence, it lacks a certain essential kind of positive evidence, or it lacks suffcient quantity of evidence necessary for choosing from an infinite set of possible generalizations.
(cont.) I focus on these learnability arguments in the context of three major topics in language acquisition: the acquisition of abstract linguistic knowledge about hierarchical phrase structure, the acquisition of verb argument structures, and the acquisition of word leaning biases.
by Amy Perfors.
Ph.D.
Nayak, Sunita. "Representation and learning for sign language recognition". [Tampa, Fla] : University of South Florida, 2008. http://purl.fcla.edu/usf/dc/et/SFE0002362.
Texto completoJarosiewicz, Eugenio. "Natural language parsing and representation in XML". [Gainesville, Fla.] : University of Florida, 2003. http://purl.fcla.edu/fcla/etd/UFE0000707.
Texto completoDawborn, Timothy James. "DOCREP: Document Representation for Natural Language Processing". Thesis, The University of Sydney, 2015. http://hdl.handle.net/2123/14767.
Texto completoRamos, González Juan José. "PML - A modeling Language for Physical Knowledge Representation". Doctoral thesis, Universitat Autònoma de Barcelona, 2003. http://hdl.handle.net/10803/5801.
Texto completoEl propósito de este trabajo ha sido el diseño de un lenguaje de modelado, PML, capaz de automatizar el proceso de modelado asegurando la reusabilidad de modelos que pueden ser predefinidos de manera independiente al contexto físico don seran reutilizados. La reutilización de modelos se contempla tanto en la contrucción de nuevos modelos (modelado estructurado) como en su utilización para diferentes objetivos de experimentación. Los nuevos modelos son contruidos acoplando modelos predefinidos de acurdo a la topología física del sistema modelado. Tales modelos pueden ser manipulados para adecuarlos a distintos objetivos de experimentación, adecuándose la formulación matemática de la dinámicas de interés marcadas por dichos objetivos.
PML es un lenguaje de modelado orientado a objetos diseñado para describir el comportamiento del sistema físico mediante estructuras de representación modulares (clases de modelado). La clases PML representan conceptos físicos que son familiares al modelador. El conocimiento físico declarado por la clases se utiliza para analizar los modelos estructurados, obteniéndose de manera automatizada la representación matemática de las dinámicas de interés.
The topic of this thesis is the automated modeling of physical systems. Modeling automation has been a common objective in many of the present modeling tools. Reuse of predefined models is probably the main approach adopted by many of them in order to reduce the modeling burden. However, to facilitate reuse is difficult to achieve and, as it is discussed thoroughly in the thesis, reusability of models can not be assured when they are predefined to represent the system dynamics in a particular physical context. In order to avoid the reuse constraints due to the system dynamics formulation, a modeling language should be defined with a clear separation between the physical behaviour representation aspects (declarative physical knowledge) and the computational aspects concerning to model simulation (procedural computational knowledge). The physical knowledge will represent the system behaviour and it will support the analysis of the model reusing context in order to set the system dynamics formulation.
The aim of this work is the design of a modeling language, PML, able to automate the modeling process by assuring the reusability of ready-made models independently of the physical context where they have been defined. The reuse of a predefined model contemplates both the construction of new models (structured modeling) and the model usage for different experimentation purposes. New models are constructed by coupling predefined models according to the physical system topology. Such structured models are manipulated in order to obtain the representation of the system dynamics which are of interest for the experimentation purposes.
PML is an object oriented modeling language designed to represent system behaviour by means of modular structures (modeling classes). The PML modeling classes describe physical concepts well-known by the modeller. The physical knowledge declared by the modeling classes is used to analyze structured models in order to generate automatically the mathematical representation of the system dynamics. The simulation model is obtained by means of an equation-based object oriented modeling language.
Stephens, Robert Andrew. "Representation and knowledge acquisition : the problem of language". Thesis, University of the West of England, Bristol, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.321831.
Texto completoRocktaschel, Tim. "Combining representation learning with logic for language processing". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10040845/.
Texto completoLibros sobre el tema "Language Representation"
Language, thought, and representation. Chichester: J. Wiley & Sons, 1993.
Buscar texto completoLarrazabal, Jesús M. y Luis A. Pérez Miranda, eds. Language, Knowledge, and Representation. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/978-1-4020-2783-3.
Texto completoM, Larrazabal Jesús y Pérez Miranda Luis A, eds. Language, knowledge, and representation. Boston, Mass: Kluwer Academic Publishers, 2004.
Buscar texto completoCrumplin, Mary-Ann. Problems of democracy: Language and speaking. Freeland, Oxfordshire: Inter-Disciplinary Press, 2011.
Buscar texto completoProblems of democracy: Language and speaking. Freeland, Oxfordshire: Inter-Disciplinary Press, 2011.
Buscar texto completoDivjak, Dagmar y Stefan Th Gries, eds. Frequency Effects in Language Representation. Berlin, Boston: DE GRUYTER, 2012. http://dx.doi.org/10.1515/9783110274073.
Texto completoMacGregor, R. The Loom Knowledge representation language. Marina Del Ray: University of Southern California, 1987.
Buscar texto completoFrequency effects in language representation. Berlin: De Gruyter Mouton, 2012.
Buscar texto completoPeter, Robinson, Jungheim Nicholas O y Pacific Second Language Research Forum., eds. Representation and process. Tokyo [Japan]: Pacific Second Language Research Forum, 1999.
Buscar texto completoLiu, Zhiyuan, Yankai Lin y Maosong Sun. Representation Learning for Natural Language Processing. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5573-2.
Texto completoCapítulos de libros sobre el tema "Language Representation"
Buhmann, M. D., Prem Melville, Vikas Sindhwani, Novi Quadrianto, Wray L. Buntine, Luís Torgo, Xinhua Zhang et al. "Representation Language". En Encyclopedia of Machine Learning, 863. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-0-387-30164-8_725.
Texto completoSimchen, Ori. "Semantics and Ordinary Language". En Philosophical Representation, 61–80. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003306443-4.
Texto completoCoupland, Nikolas. "‘Other’ representation". En Society and Language Use, 241–60. Amsterdam: John Benjamins Publishing Company, 2010. http://dx.doi.org/10.1075/hoph.7.16cou.
Texto completoJohnson, Michael L. "Form, Representation, Presence". En Mind, Language, Machine, 80–85. London: Palgrave Macmillan UK, 1988. http://dx.doi.org/10.1007/978-1-349-19404-9_15.
Texto completoBosch, Peter. "Indexicality and representation". En Natural Language and Logic, 50–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/3-540-53082-7_16.
Texto completoLiu, Zhiyuan, Yankai Lin y Maosong Sun. "Word Representation". En Representation Learning for Natural Language Processing, 13–41. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5573-2_2.
Texto completoLiu, Zhiyuan, Yankai Lin y Maosong Sun. "Sentence Representation". En Representation Learning for Natural Language Processing, 59–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5573-2_4.
Texto completoLiu, Zhiyuan, Yankai Lin y Maosong Sun. "Document Representation". En Representation Learning for Natural Language Processing, 91–123. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5573-2_5.
Texto completoLiu, Zhiyuan, Yankai Lin y Maosong Sun. "Network Representation". En Representation Learning for Natural Language Processing, 217–83. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5573-2_8.
Texto completoScott, Bernard. "The SAL Representation Language". En Translation, Brains and the Computer, 205–41. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76629-4_9.
Texto completoActas de conferencias sobre el tema "Language Representation"
Chen, Zhenpeng, Sheng Shen, Ziniu Hu, Xuan Lu, Qiaozhu Mei y Xuanzhe Liu. "Emoji-Powered Representation Learning for Cross-Lingual Sentiment Classification (Extended Abstract)". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/649.
Texto completoCheng, Nancy Yen-wen. "Teaching CAD with Language Learning Methods". En ACADIA 1997: Representation and Design. ACADIA, 1997. http://dx.doi.org/10.52842/conf.acadia.1997.173.
Texto completoAchsas, Sanae y El Habib Nfaoui. "Language representation learning models". En SITA'20: Theories and Applications. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3419604.3419773.
Texto completoMuji, Muji. "Language: Representation of Mind". En Proceedings of the 1st Konferensi Internasional Berbahasa Indonesia Universitas Indraprasta PGRI, KIBAR 2020, 28 October 2020, Jakarta, Indonesia. EAI, 2022. http://dx.doi.org/10.4108/eai.28-10-2020.2315327.
Texto completoLevialdi, S. y C. E. Bernardelli. "Representation: Relationship between Language and Image". En Conference on Representation: Relationship between Language and Image. WORLD SCIENTIFIC, 1994. http://dx.doi.org/10.1142/9789814534659.
Texto completoKountchev, R., Vl Todorov y R. Kountcheva. "Efficient sign language video representation". En 2008 International Conference on Systems, Signals and Image Processing (IWSSIP). IEEE, 2008. http://dx.doi.org/10.1109/iwssip.2008.4604396.
Texto completoLi, Yian y Hai Zhao. "Pre-training Universal Language Representation". En Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.acl-long.398.
Texto completoKollar, Thomas, Danielle Berry, Lauren Stuart, Karolina Owczarzak, Tagyoung Chung, Lambert Mathias, Michael Kayser, Bradford Snow y Spyros Matsoukas. "The Alexa Meaning Representation Language". En Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers). Stroudsburg, PA, USA: Association for Computational Linguistics, 2018. http://dx.doi.org/10.18653/v1/n18-3022.
Texto completoBrown, Paul C. "A Concept Representation Language (CRL)". En 2018 IEEE 12th International Conference on Semantic Computing (ICSC). IEEE, 2018. http://dx.doi.org/10.1109/icsc.2018.00010.
Texto completoNeville, Dorothy y Leo Joskowicz. "A Representation Language for Mechanical Behavior". En ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0001.
Texto completoInformes sobre el tema "Language Representation"
Moore, Robert C. Knowledge Representation and Natural-Language Semantics. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1986. http://dx.doi.org/10.21236/ada181422.
Texto completoMoore, Robert C. Knowledge Representation and Natural-Language Semantics. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1985. http://dx.doi.org/10.21236/ada162389.
Texto completoAllen, James F. Natural Language, Knowledge Representation, and Logical Form. Fort Belvoir, VA: Defense Technical Information Center, enero de 1991. http://dx.doi.org/10.21236/ada247389.
Texto completoSidner, C. Research in Knowledge Representation for Natural Language Understanding. Fort Belvoir, VA: Defense Technical Information Center, febrero de 1985. http://dx.doi.org/10.21236/ada152260.
Texto completoDelugach, Harry S., Lissa C. Cox y David J. Skipper. Dependency Language Representation Using Conceptual Graphs. Autonomic Information Systems. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2001. http://dx.doi.org/10.21236/ada399504.
Texto completoKuehne, Sven E. On the Representation of Physical Quantities in Natural Language Text. Fort Belvoir, VA: Defense Technical Information Center, enero de 2004. http://dx.doi.org/10.21236/ada465872.
Texto completoBirkholz, H., C. Vigano y C. Bormann. Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures. RFC Editor, junio de 2019. http://dx.doi.org/10.17487/rfc8610.
Texto completoZelenskyi, Arkadii A. Relevance of research of programs for semantic analysis of texts and review of methods of their realization. [б. в.], diciembre de 2018. http://dx.doi.org/10.31812/123456789/2884.
Texto completoTarasenko, Rostyslav O., Svitlana M. Amelina, Yuliya M. Kazhan y Olga V. Bondarenko. The use of AR elements in the study of foreign languages at the university. CEUR Workshop Proceedings, noviembre de 2020. http://dx.doi.org/10.31812/123456789/4421.
Texto completoTarasenko, Rostyslav O., Svitlana M. Amelina, Yuliya M. Kazhan y Olga V. Bondarenko. The use of AR elements in the study of foreign languages at the university. CEUR Workshop Proceedings, noviembre de 2020. http://dx.doi.org/10.31812/123456789/4421.
Texto completo