Artículos de revistas sobre el tema "Known and Zero-Day Attacks Detection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Known and Zero-Day Attacks Detection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Nerella Sameera, M.Siva Jyothi, K.Lakshmaji y V.S.R.Pavan Kumar. Neeli. "Clustering based Intrusion Detection System for effective Detection of known and Zero-day Attacks". Journal of Advanced Zoology 44, n.º 4 (2 de diciembre de 2023): 969–75. http://dx.doi.org/10.17762/jaz.v44i4.2423.
Texto completoHindy, Hanan, Robert Atkinson, Christos Tachtatzis, Jean-Noël Colin, Ethan Bayne y Xavier Bellekens. "Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection". Electronics 9, n.º 10 (14 de octubre de 2020): 1684. http://dx.doi.org/10.3390/electronics9101684.
Texto completoOhtani, Takahiro, Ryo Yamamoto y Satoshi Ohzahata. "IDAC: Federated Learning-Based Intrusion Detection Using Autonomously Extracted Anomalies in IoT". Sensors 24, n.º 10 (18 de mayo de 2024): 3218. http://dx.doi.org/10.3390/s24103218.
Texto completoHairab, Belal Ibrahim, Heba K. Aslan, Mahmoud Said Elsayed, Anca D. Jurcut y Marianne A. Azer. "Anomaly Detection of Zero-Day Attacks Based on CNN and Regularization Techniques". Electronics 12, n.º 3 (23 de enero de 2023): 573. http://dx.doi.org/10.3390/electronics12030573.
Texto completoAl-Rushdan, Huthifh, Mohammad Shurman y Sharhabeel Alnabelsi. "On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox in Software-Defined Networks". International Arab Journal of Information Technology 17, n.º 4A (31 de julio de 2020): 662–70. http://dx.doi.org/10.34028/iajit/17/4a/11.
Texto completoAlam, Naushad y Muqeem Ahmed. "Zero-day Network Intrusion Detection using Machine Learning Approach". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 8s (18 de agosto de 2023): 194–201. http://dx.doi.org/10.17762/ijritcc.v11i8s.7190.
Texto completoBu, Seok-Jun y Sung-Bae Cho. "Deep Character-Level Anomaly Detection Based on a Convolutional Autoencoder for Zero-Day Phishing URL Detection". Electronics 10, n.º 12 (21 de junio de 2021): 1492. http://dx.doi.org/10.3390/electronics10121492.
Texto completoAli, Shamshair, Saif Ur Rehman, Azhar Imran, Ghazif Adeem, Zafar Iqbal y Ki-Il Kim. "Comparative Evaluation of AI-Based Techniques for Zero-Day Attacks Detection". Electronics 11, n.º 23 (28 de noviembre de 2022): 3934. http://dx.doi.org/10.3390/electronics11233934.
Texto completoRodríguez, Eva, Pol Valls, Beatriz Otero, Juan José Costa, Javier Verdú, Manuel Alejandro Pajuelo y Ramon Canal. "Transfer-Learning-Based Intrusion Detection Framework in IoT Networks". Sensors 22, n.º 15 (27 de julio de 2022): 5621. http://dx.doi.org/10.3390/s22155621.
Texto completoSheikh, Zakir Ahmad, Yashwant Singh, Pradeep Kumar Singh y Paulo J. Sequeira Gonçalves. "Defending the Defender: Adversarial Learning Based Defending Strategy for Learning Based Security Methods in Cyber-Physical Systems (CPS)". Sensors 23, n.º 12 (9 de junio de 2023): 5459. http://dx.doi.org/10.3390/s23125459.
Texto completoMala, V. y K. Meena. "Hybrid classification model to detect advanced intrusions using data mining techniques". International Journal of Engineering & Technology 7, n.º 2.4 (10 de marzo de 2018): 10. http://dx.doi.org/10.14419/ijet.v7i2.4.10031.
Texto completoDas, Saikat, Mohammad Ashrafuzzaman, Frederick T. Sheldon y Sajjan Shiva. "Ensembling Supervised and Unsupervised Machine Learning Algorithms for Detecting Distributed Denial of Service Attacks". Algorithms 17, n.º 3 (24 de febrero de 2024): 99. http://dx.doi.org/10.3390/a17030099.
Texto completoNkongolo, Mike, Jacobus Philippus van Deventer y Sydney Mambwe Kasongo. "UGRansome1819: A Novel Dataset for Anomaly Detection and Zero-Day Threats". Information 12, n.º 10 (30 de septiembre de 2021): 405. http://dx.doi.org/10.3390/info12100405.
Texto completoPeppes, Nikolaos, Theodoros Alexakis, Evgenia Adamopoulou y Konstantinos Demestichas. "The Effectiveness of Zero-Day Attacks Data Samples Generated via GANs on Deep Learning Classifiers". Sensors 23, n.º 2 (12 de enero de 2023): 900. http://dx.doi.org/10.3390/s23020900.
Texto completoWang, Hui, Yifeng Wang y Yuanbo Guo. "Unknown network attack detection method based on reinforcement zero-shot learning". Journal of Physics: Conference Series 2303, n.º 1 (1 de julio de 2022): 012008. http://dx.doi.org/10.1088/1742-6596/2303/1/012008.
Texto completoSubbarayalu, Venkatraman y Maria Anu Vensuslaus. "An Intrusion Detection System for Drone Swarming Utilizing Timed Probabilistic Automata". Drones 7, n.º 4 (3 de abril de 2023): 248. http://dx.doi.org/10.3390/drones7040248.
Texto completoEmmah, Victor T., Chidiebere Ugwu y Laeticia N. Onyejegbu. "An Enhanced Classification Model for Likelihood of Zero-Day Attack Detection and Estimation". European Journal of Electrical Engineering and Computer Science 5, n.º 4 (19 de agosto de 2021): 69–75. http://dx.doi.org/10.24018/ejece.2021.5.4.350.
Texto completoYao, Wenbin, Longcan Hu, Yingying Hou y Xiaoyong Li. "A Lightweight Intelligent Network Intrusion Detection System Using One-Class Autoencoder and Ensemble Learning for IoT". Sensors 23, n.º 8 (20 de abril de 2023): 4141. http://dx.doi.org/10.3390/s23084141.
Texto completoMehedy, Hasan MD. "Combating Evolving Threats: A Signature-Anomaly Based Hybrid Intrusion Detection System for Smart Homes with False Positive Mitigation". International Journal for Research in Applied Science and Engineering Technology 12, n.º 5 (31 de mayo de 2024): 403–11. http://dx.doi.org/10.22214/ijraset.2024.61393.
Texto completoNeuschmied, Helmut, Martin Winter, Branka Stojanović, Katharina Hofer-Schmitz, Josip Božić y Ulrike Kleb. "APT-Attack Detection Based on Multi-Stage Autoencoders". Applied Sciences 12, n.º 13 (5 de julio de 2022): 6816. http://dx.doi.org/10.3390/app12136816.
Texto completoVenu Gopal Bitra, Ajay Kumar, Seshagiri Rao, Prakash y Md. Shakeel Ahmed. "Comparative analysis on intrusion detection system using machine learning approach". World Journal of Advanced Research and Reviews 21, n.º 3 (30 de marzo de 2024): 2555–62. http://dx.doi.org/10.30574/wjarr.2024.21.3.0983.
Texto completoKhraisat, Gondal, Vamplew, Kamruzzaman y Alazab. "A novel Ensemble of Hybrid Intrusion Detection System for Detecting Internet of Things Attacks". Electronics 8, n.º 11 (23 de octubre de 2019): 1210. http://dx.doi.org/10.3390/electronics8111210.
Texto completoMerugu, Akshay, Hrishikesh Goud Chagapuram y Rahul Bollepalli. "Spam Email Detection Using Convolutional Neural Networks: An Empirical Study". International Journal for Research in Applied Science and Engineering Technology 11, n.º 10 (31 de octubre de 2023): 981–91. http://dx.doi.org/10.22214/ijraset.2023.56143.
Texto completoBhaya, Wesam S. y Mustafa A. Ali. "Review on Malware and Malware Detection Using Data Mining Techniques". JOURNAL OF UNIVERSITY OF BABYLON for Pure and Applied Sciences 25, n.º 5 (29 de noviembre de 2017): 1585–601. http://dx.doi.org/10.29196/jub.v25i5.104.
Texto completoGetman, Aleksandr Igorevich, Maxim Nikolaevich Goryunov, Andrey Georgievich Matskevich y Dmitry Aleksandrovich Rybolovlev. "A Comparison of a Machine Learning-Based Intrusion Detection System and Signature-Based Systems". Proceedings of the Institute for System Programming of the RAS 34, n.º 5 (2022): 111–26. http://dx.doi.org/10.15514/ispras-2022-34(5)-7.
Texto completoRahman, Rizwan Ur y Deepak Singh Tomar. "Web Bot Detection System Based on Divisive Clustering and K-Nearest Neighbor Using Biostatistics Features Set". International Journal of Digital Crime and Forensics 13, n.º 6 (1 de noviembre de 2021): 1–27. http://dx.doi.org/10.4018/ijdcf.20211101.oa6.
Texto completoDr.R.Venkatesh, Kavitha S, Dr Uma Maheswari N,. "Network Anomaly Detection for NSL-KDD Dataset Using Deep Learning". INFORMATION TECHNOLOGY IN INDUSTRY 9, n.º 2 (31 de marzo de 2021): 821–27. http://dx.doi.org/10.17762/itii.v9i2.419.
Texto completoP. Arul, Et al. "Predicting the Attacks in IoT Devices using DP Algorithm". International Journal on Recent and Innovation Trends in Computing and Communication 11, n.º 11 (30 de noviembre de 2023): 164–68. http://dx.doi.org/10.17762/ijritcc.v11i11.9133.
Texto completoOthman, Trifa S. y Saman M. Abdullah. "An Intelligent Intrusion Detection System for Internet of Things Attack Detection and Identification Using Machine Learning". ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY 11, n.º 1 (22 de mayo de 2023): 126–37. http://dx.doi.org/10.14500/aro.11124.
Texto completoDange, Varsha, Soham Phadke, Tilak Solunke, Sidhesh Marne, Snehal Suryawanshi y Om Surase. "Weighted Multiclass Intrusion Detection System". ITM Web of Conferences 57 (2023): 01009. http://dx.doi.org/10.1051/itmconf/20235701009.
Texto completoBOBROVNIKOVA, KIRA, MARIIA KAPUSTIAN y DMYTRO DENYSIUK. "RESEARCH OF MACHINE LEARNING BASED METHODS FOR CYBERATTACKS DETECTION IN THE INTERNET OF THINGS INFRASTRUCTURE". Computer systems and information technologies, n.º 3 (14 de abril de 2022): 110–15. http://dx.doi.org/10.31891/csit-2021-5-15.
Texto completoM.R., Amal y Venkadesh P. "Review of Cyber Attack Detection: Honeypot System". Webology 19, n.º 1 (20 de enero de 2022): 5497–514. http://dx.doi.org/10.14704/web/v19i1/web19370.
Texto completoKhraisat, Ansam, Iqbal Gondal, Peter Vamplew, Joarder Kamruzzaman y Ammar Alazab. "Hybrid Intrusion Detection System Based on the Stacking Ensemble of C5 Decision Tree Classifier and One Class Support Vector Machine". Electronics 9, n.º 1 (17 de enero de 2020): 173. http://dx.doi.org/10.3390/electronics9010173.
Texto completoСычугов, А. А. y М. М. Греков. "Application of generative adversarial networks in anomaly detection systems". МОДЕЛИРОВАНИЕ, ОПТИМИЗАЦИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ 9, n.º 1(32) (31 de enero de 2021): 3–4. http://dx.doi.org/10.26102/2310-6018/2021.32.1.003.
Texto completoAl-Sabbagh, Kais Said, Hamid M. Ali y Elaf Sabah Abbas. "Development an Anomaly Network Intrusion Detection System Using Neural Network". Journal of Engineering 18, n.º 12 (1 de diciembre de 2012): 1325–34. http://dx.doi.org/10.31026/j.eng.2012.12.03.
Texto completoIliyasu, Auwal Sani, Usman Alhaji Abdurrahman y Lirong Zheng. "Few-Shot Network Intrusion Detection Using Discriminative Representation Learning with Supervised Autoencoder". Applied Sciences 12, n.º 5 (24 de febrero de 2022): 2351. http://dx.doi.org/10.3390/app12052351.
Texto completoArshi, M., MD Nasreen y Karanam Madhavi. "A Survey of DDOS Attacks Using Machine Learning Techniques". E3S Web of Conferences 184 (2020): 01052. http://dx.doi.org/10.1051/e3sconf/202018401052.
Texto completoKumar Lingamallu, Raghu, Pradeep Balasubramani, S. Arvind, P. Srinivasa Rao, Veeraswamy Ammisetty, Koppuravuri Gurnadha Gupta, M. N. Sharath, Y. J. Nagendra Kumar y Vaibhav Mittal. "Securing IoT networks: A fog-based framework for malicious device detection". MATEC Web of Conferences 392 (2024): 01103. http://dx.doi.org/10.1051/matecconf/202439201103.
Texto completoKikelomo, Akinwole Agnes, Yekini Nureni Asafe y Ogundele Israel Oludayo. "Malware Detection System Using Mathematics of Random Forest Classifier". International Journal of Advances in Scientific Research and Engineering 09, n.º 03 (2023): 45–53. http://dx.doi.org/10.31695/ijasre.2023.9.3.6.
Texto completoZoppi, Tommaso, Mohamad Gharib, Muhammad Atif y Andrea Bondavalli. "Meta-Learning to Improve Unsupervised Intrusion Detection in Cyber-Physical Systems". ACM Transactions on Cyber-Physical Systems 5, n.º 4 (31 de octubre de 2021): 1–27. http://dx.doi.org/10.1145/3467470.
Texto completoLi, Shiyun y Omar Dib. "Enhancing Online Security: A Novel Machine Learning Framework for Robust Detection of Known and Unknown Malicious URLs". Journal of Theoretical and Applied Electronic Commerce Research 19, n.º 4 (26 de octubre de 2024): 2919–60. http://dx.doi.org/10.3390/jtaer19040141.
Texto completoSamantray, Om Prakash y Satya Narayan Tripathy. "An Opcode-Based Malware Detection Model Using Supervised Learning Algorithms". International Journal of Information Security and Privacy 15, n.º 4 (octubre de 2021): 18–30. http://dx.doi.org/10.4018/ijisp.2021100102.
Texto completoSerinelli, Benedetto Marco, Anastasija Collen y Niels Alexander Nijdam. "On the analysis of open source datasets: validating IDS implementation for well-known and zero day attack detection". Procedia Computer Science 191 (2021): 192–99. http://dx.doi.org/10.1016/j.procs.2021.07.024.
Texto completoRangaraju, Sakthiswaran. "AI SENTRY: REINVENTING CYBERSECURITY THROUGH INTELLIGENT THREAT DETECTION". EPH - International Journal of Science And Engineering 9, n.º 3 (1 de diciembre de 2023): 30–35. http://dx.doi.org/10.53555/ephijse.v9i3.211.
Texto completoAlsulami, Basmah, Abdulmohsen Almalawi y Adil Fahad. "Toward an Efficient Automatic Self-Augmentation Labeling Tool for Intrusion Detection Based on a Semi-Supervised Approach". Applied Sciences 12, n.º 14 (17 de julio de 2022): 7189. http://dx.doi.org/10.3390/app12147189.
Texto completoH., Manjunath y Saravana Kumar. "Network Intrusion Detection System using Convolution Recurrent Neural Networks and NSL-KDD Dataset". Fusion: Practice and Applications 13, n.º 1 (2023): 117–25. http://dx.doi.org/10.54216/fpa.130109.
Texto completoBalaji K. M. y Subbulakshmi T. "Malware Analysis Using Classification and Clustering Algorithms". International Journal of e-Collaboration 18, n.º 1 (enero de 2022): 1–26. http://dx.doi.org/10.4018/ijec.290290.
Texto completoDung, Nguyễn Thị, Nguyễn Văn Quân y Nguyễn Việt Hùng. "Ứng dụng mô hình học sâu trong phát hiện tấn công trinh sát mạng". Journal of Science and Technology on Information security 2, n.º 16 (13 de febrero de 2023): 60–72. http://dx.doi.org/10.54654/isj.v1i16.922.
Texto completoU., Kumaran, Thangam S., T. V. Nidhin Prabhakar, Jana Selvaganesan y Vishwas H.N. "Adversarial Defense: A GAN-IF Based Cyber-security Model for Intrusion Detection in Software Piracy". Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications 14, n.º 4 (23 de diciembre de 2023): 96–114. http://dx.doi.org/10.58346/jowua.2023.i4.008.
Texto completoJagan, Shanmugam, Ashish Ashish, Miroslav Mahdal, Kenneth Ruth Isabels, Jyoti Dhanke, Parita Jain y Muniyandy Elangovan. "A Meta-Classification Model for Optimized ZBot Malware Prediction Using Learning Algorithms". Mathematics 11, n.º 13 (24 de junio de 2023): 2840. http://dx.doi.org/10.3390/math11132840.
Texto completo