Literatura académica sobre el tema "Kindline-2"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Kindline-2".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Kindline-2"
Mi, Yingchang, Wenbin Wu, Qing Zhang, Yan Li, Xiaoyan Li, Zheng Tian y Min Wang. "Expression of Kindlins in Acute Myeloid Leukemia". Blood 118, n.º 21 (18 de noviembre de 2011): 4910. http://dx.doi.org/10.1182/blood.v118.21.4910.4910.
Texto completoKadry, Yasmin A., Eesha M. Maisuria, Clotilde Huet-Calderwood y David A. Calderwood. "Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding". Journal of Biological Chemistry 295, n.º 32 (16 de junio de 2020): 11161–73. http://dx.doi.org/10.1074/jbc.ra120.013618.
Texto completoMcDowall, Alison, Lena Svensson, Paula Stanley, Irene Patzak, Probir Chakravarty, Kimberley Howarth, Himalee Sabnis, Michael Briones y Nancy Hogg. "Two mutations in the KINDLIN3 gene of a new leukocyte adhesion deficiency III patient reveal distinct effects on leukocyte function in vitro". Blood 115, n.º 23 (10 de junio de 2010): 4834–42. http://dx.doi.org/10.1182/blood-2009-08-238709.
Texto completoMalinin, Nikolay L., Edward F. Plow y Tatiana V. Byzova. "Kindlins in FERM adhesion". Blood 115, n.º 20 (20 de mayo de 2010): 4011–17. http://dx.doi.org/10.1182/blood-2009-10-239269.
Texto completoMeller, Julia, Igor B. Rogozin, Eugenia Poliakov, Nahum Meller, Mark Bedanov-Pack, Edward F. Plow, Jun Qin, Eugene A. Podrez y Tatiana V. Byzova. "Emergence and subsequent functional specialization of kindlins during evolution of cell adhesiveness". Molecular Biology of the Cell 26, n.º 4 (15 de febrero de 2015): 786–96. http://dx.doi.org/10.1091/mbc.e14-08-1294.
Texto completoArnold, M., S. Rehart, M. Sauerbier, C. Biehl, C. Heck, U. Müller-Ladner y E. Neumann. "POS1035 FOCAL ADHESION PROTEINS KINDLIN-1, -2 AND TALIN-1 ARE REGULATED IN IL-1Β-STIMULATED RHEUMATOID ARTHRITIS SYNOVIAL FIBROBLASTS". Annals of the Rheumatic Diseases 82, Suppl 1 (30 de mayo de 2023): 835.1–835. http://dx.doi.org/10.1136/annrheumdis-2023-eular.3477.
Texto completoTan, Hui-Foon y Suet-Mien Tan. "The focal adhesion protein kindlin-2 controls mitotic spindle assembly by inhibiting histone deacetylase 6 and maintaining α-tubulin acetylation". Journal of Biological Chemistry 295, n.º 18 (13 de marzo de 2020): 5928–43. http://dx.doi.org/10.1074/jbc.ra120.012954.
Texto completoSun, Jiaojiao, Desheng Xiao, Yuan Ni, Tianlong Zhang, Zhongyuan Cao, Zhou Xu, Huong Nguyen et al. "Structure basis of the FERM domain of kindlin-3 in supporting integrin αIIbβ3 activation in platelets". Blood Advances 4, n.º 13 (10 de julio de 2020): 3128–35. http://dx.doi.org/10.1182/bloodadvances.2020001575.
Texto completoPluskota, Elzbieta, James J. Dowling, Natalie Gordon, Jeffrey A. Golden, Dorota Szpak, XiaoXia Z. West, Carla Nestor et al. "The integrin coactivator Kindlin-2 plays a critical role in angiogenesis in mice and zebrafish". Blood 117, n.º 18 (5 de mayo de 2011): 4978–87. http://dx.doi.org/10.1182/blood-2010-11-321182.
Texto completoGodbout, Elena, Dong Ok Son, Stephanie Hume, Stellar Boo, Vincent Sarrazy, Sophie Clément, Andras Kapus et al. "Kindlin-2 Mediates Mechanical Activation of Cardiac Myofibroblasts". Cells 9, n.º 12 (17 de diciembre de 2020): 2702. http://dx.doi.org/10.3390/cells9122702.
Texto completoTesis sobre el tema "Kindline-2"
Orré, Thomas. "Mécanismes moléculaires d’activation des intégrines par la kindline-2 lors de l’adhésion cellulaire". Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0824/document.
Texto completoFocal adhesions (FAs) are adhesive structures linking the cell to the extracellular matrix (ECM) and constitute molecular platforms for biochemical and mechanical signals controlling cell adhesion, migration, differentiation and survival. Integrin transmembrane receptors are core components of FAs, connecting the ECM to the actin cytoskeleton. During the early 2000s, the intracellular protein talin, which directly binds to the cytoplasmic tail of β-integrins, was considered as the main integrin activator. Nevertheless, it has been shown that kindlin, another intracellular protein that bind to β-integrin, is also a critical integrin activator. In fact, several studies have shown that kindlin and talin play complementary and synergistic roles during integrin activation. The molecular basis of these phenomena remains to determine. Moreover, most studies focusing on the role of kindlin during integrin activation and cell adhesion have been performed with suspended cells and/or with the platelet integrin αIIbβ3. Here we combined PALM microscopy with single protein tracking to decipher the role and behavior of kindlin during key molecular events occurring outside and inside FAs at the plasma membrane and leading to integrin activation, as we have done previously for talin (Rossier et al., 2012). We found that beta1 and beta3-integrins with a point mutation inhibiting binding to kindlin show reduced immobilization inside FAs. We also found that kindlin-2, which is enriched inside FAs, displayed free diffusion at the plasma membrane outside and inside FAs. This constitutes a major difference with talin, which, at the plasma membrane level, is observed almost exclusively in FAs, where it is immobile, which shows that talin is recruited into FAs directly from the cytosol without lateral diffusion along the plasma membrane (Rossier et al. 2012). To determine the molecular basis of kindlin membrane recruitment and diffusion, we used a kindlin variant known to decrease binding to integrins (kindlin-2- QW614/615AA). This mutant displayed increased membrane diffusion, suggesting that kindlin-2 can freely diffuse at the plasma membrane without interacting with integrins. Moreover, the kindlin-2-QW mutant showed decreased immobilization inside FA, showing that part of kindlin immobilization depends on interaction with integrins. This suggests that kindlin can form an immobile complex with integrins inside focal adhesions. Deletion of the kindlin pleckstrin homology (PH) domain strongly reduced the membrane recruitment and diffusion of kindlin. We assessed the functional role of kindlin membrane recruitment and diffusion by re-expressing different kindlin-2 mutants in kindlin-1/kindlin-2 double KO cells. Those experiments demonstrated that kindlin-2 membrane recruitment and diffusion are crucial for integrin activation during cell spreading and favor adhesion formation. This suggests that kindlin uses a different route from talin to reach integrins and trigger their activation, providing a possible molecular basis for their complementarity during integrin activation
Fiorucci, Sandrine. "Caractérisation cellulaire et moléculaire de l'activité de dérivés de 2-aryl-3-quinolone, une famille de petites molécules antagonistes de la queue cytoplasmique des intégrines". Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENV058/document.
Texto completoFlavonoïds have been studied for years for their potential chemopreventive and chemotherapeutic action. Several mechanisms might account for their anticancer activity, among which inhibition of cell adhesion and spreading, or inhibition of tumor cell invasion. 3-aryl-2-quinolone derivatives are chemical structures close to flavonoïds and were first designed as anti-migratory agents (Joseph et Al., J.Med.Chem, 2002). As cell migration is highly dependent on the cell adhesion machinery, we decided to investigate the action of these molecules on focal and fibrillar adhesions. These large protein complexes include heterodimeric transmembrane proteins, the integrins, and their cytoplasmic interactors able to link to the cytoskeleton. Integrins allow microenvironment sensing and cellular response to it. Adhesive structures containing integrins are also able to control cell microenvironment (matrix degradation, fibrillogenesis…). Our studies show that 3-aryl-2-quinolone derivatives are able not only to prevent cell spreading but also to disrupt already well-established focal adhesions in a reversible and ECM composition independent manner. The activity of the molecule is closely linked with its structure, as very slight modification of the lateral chain of the compound can totally impair its activity. Our work is focused on establishing a Structure-Activity Relationship of 3-aryl-2-quinolone derivatives and on investigating the molecular mechanisms underlying this activity. Osteoblasts treatment by 3-aryl-2-quinolone derivatives triggers a rapid disassembly of focal and fibrillar adhesions. NMR experiments show a direct interaction between the lead compound of the family and 3 integrin cytoplasmic tail and pull-down assay show that it is able to reduce the interaction between 3 integrin and kindlin, one of its coactivator. As platelet activation is an archetype of 3 integrin activation, we tested the activity of 3-aryl-2-quinolone on this physiological process. Under treatment, platelets failed to become activated and are unable to trigger thrombus formation, providing an interest to the 3-aryl-2-quinolone derivatives as potential anti-thrombotic agents
Najdek, Chloé. "Caractérisation des mécanismes responsables d'une perte de fonction de Kindline-2 dans le processus physiopathologique de la maladie d'Alzheimer". Electronic Thesis or Diss., Université de Lille (2022-....), 2024. http://www.theses.fr/2024ULILS072.
Texto completoAlzheimer’s disease (AD), the leading cause of dementia worldwide, is a neurodegenerative disease leading to significant neuronal loss and progressive cognitive decline. It is characterized by 2 main lesions: (i) neurofibrillary tangles due to the intracellular accumulation of hyperphosphorylated Tau protein, and (ii) senile plaques caused by the extracellular aggregation of Aβ peptides, products of APP catabolism. Furthermore, synaptic dysfunction and loss is one of the early markers of the disease. AD is a multifactorial disease with a genetic component estimated at 60-80%. Genome-wide association studies (GWAS) have identified several susceptibility genes for AD, including the FERMT2 gene. This gene encodes the Kindline-2 (KD2) adaptor protein, which has been identified as an important modulator of APP metabolism and Aβ production. Although KD2 was initially described for its role in cell adhesion via integrin activation,its functions in the brain were poorly understood. Recently, it was reported that APP and KD2 form a protein-protein complex, and that this KD2/APP interaction was necessary for KD2 to have an impact on APP metabolism. Furthermore, KD2 isthought to regulate synaptic plasticity in an APP-dependent manner. It has therefore been suggested that deregulation of KD2 could have a deleterious effect on synaptic function and promote the AD process. In this context, the aim of my work was to identify the mechanisms that could lead to a loss of KD2 function. Our results suggest that cleavage of the KD2 protein may play a role in the synaptic dysfunctions associated with AD. We have identified KD2 as a novel substrate for two cysteine proteases, caspase and calpain, which are known to regulate synaptic plasticity. In addition, we demonstrate that these cleavages lead to inhibition of KD2’s ability to regulate APP metabolism.KD2 is an adaptor protein involved in the formation of protein complexes essential for cell adhesion. These cleavages could therefore inhibit the functions of KD2 by limiting its ability to recruit various partners involved in the regulation of APP metabolism. Among these partners, we have shown that SRC, recently identified as a genetic risk factor for AD, is also an important regulator of APP metabolism. Our results suggest the existence of an APP/KD2/SRC complex, and that the regulation of APP metabolism by KD2 is dependent on the activity of SRC. Finally, we identified a rare non-synonymous variant (V177L) in SRC, associated with an increased risk of developing AD. Our data show that this variant alters the activity of SRC,as well as its ability to interact with KD2. In addition, this variant leads to an alteration in APP metabolism, suggesting that the impact of the V177L variant on APP metabolism could result from an alteration in the KD2/SRC interaction.Altogether, these results have made it possible to identify new potential mechanisms in the regulation of KD2 functions, involving several genes associated with the risk of developing AD(FERMT2, APP and SRC). Ultimately, this work will provide a better understanding of the pathophysiological mechanisms promoting the onset of synaptic dysfunction in relation to the genetic susceptibility factors for AD
Jan, Budour H. 1984. "The Role of Kindlin-2 in the progression of renal fibrosis". Doctoral thesis, Universitat Pompeu Fabra, 2017. http://hdl.handle.net/10803/543848.
Texto completoLa enfermedad renal crónica (ERC) se caracteriza habitualmente por lesiones histológicas relacionadas con la glomeruloesclerosis y la fibrosis tubulointersticial (FTI). La progresión de la FTI se induce por múltiples mecanismos moleculares como factores de transcripción, toxinas metabólicas y moléculas de estrés. Uno de los mediadores clave en esta progresión es TGF-1 que induce respuestas en gran variedad de tipos celulares. En las células tubulares renales, la activación del TGF-1 requiere la unión de Kindlin-2 al receptor de TGF-1. La expresión de Kindlin-2 se testó en tres condiciones de lesión distintas y se encontró su correlación con la progresión del proceso fibrótico renal. Después de 48 horas, 7 días y 45 días tras una lesión isquémica, el tejido renal de ratón expresó Kindlin-2 de una forma similar durante la evolución del proceso fibrótico. En las biopsias humanas con características compatibles con la necrosis tubular aguda (NTA), Kindlin-2 se detectó en varias zonas del tejido renal. Se describió una alta expresión en túbulos y en células de músculo liso de las arterias se encontró disminuido. Este perfil fue opuesto en las biopsias sin características histológicas de NTA. Kindlin-2 está activado en los procesos más inmediatos en la lesión y se mantiene a lo largo de la progresión, asumiendo un papel necesario en este proceso.
Perera, Hettiarachchige Dhanuja Deepamalee. "Molecular Basis of the Role of Kindlin 2 in Cell Adhesion". Cleveland State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=csu1295461683.
Texto completoWidmaier, Sven Moritz. "The role of Kindlin-2 for early events in integrin activation and signaling". Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-183649.
Texto completoFu, Xuekun. "The role of osteocyte Kindlin-2 in the anabolic actions of PTH in bone". HKBU Institutional Repository, 2020. https://repository.hkbu.edu.hk/etd_oa/741.
Texto completoTheodosiou, Marina [Verfasser] y Reinhard [Akademischer Betreuer] Fässler. "Regulation of Kindlin-2 function by protein-protein interaction and post-translational modifications / Marina Theodosiou ; Betreuer: Reinhard Fässler". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2018. http://d-nb.info/1205664866/34.
Texto completoWidmaier, Sven Moritz [Verfasser] y Reinhard [Akademischer Betreuer] Fässler. "The role of Kindlin-2 for early events in integrin activation and signaling / Sven Moritz Widmaier. Betreuer: Reinhard Fässler". München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2014. http://d-nb.info/1073121259/34.
Texto completoDong, Yu. "Ca²⁺/calmodulin dependent protein kinase II subcellular re-distribution and activation of protein phosphatase after a brief pentylenetetrazol seizure potential role in kindling /". Connect to full-text via OhioLink ETD Center, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=mco1082463968.
Texto completo"In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Sciences." Major advisor: Howard Rosenberg. Document formatted into pages: iv, 144 p. Title from title page of PDF document. Includes bibliographical references (p. 104-132).
Capítulos de libros sobre el tema "Kindline-2"
Stafstrom, Carl E., Li-Rong Shao y Thomas P. Sutula. "Antiseizure and Antiepileptic Effects of Glycolysis Inhibition with 2-Deoxyglucose". En Ketogenic Diet and Metabolic Therapies, editado por Susan A. Masino, Detlev Boison, Dominic P. D’Agostino, Eric H. Kossoff y Jong M. Rho, 498–508. Oxford University Press, 2022. http://dx.doi.org/10.1093/med/9780197501207.003.0038.
Texto completo"CHAPTER 2. Kindling: The History of Ethnic Conflict". En Burning Dislike, 35–53. University of California Press, 2019. http://dx.doi.org/10.1525/9780520963870-005.
Texto completoGeorge, Susan Ella. "Christian Community". En Religion and Technology in the 21st Century, 155–78. IGI Global, 2006. http://dx.doi.org/10.4018/978-1-59140-714-0.ch008.
Texto completoActas de conferencias sobre el tema "Kindline-2"
Chen, W., Y. Epshtein, A. E. Cress, J. G. N. Garcia y J. R. Jacobson. "Human Lung Endothelial Cell Barrier Function Is Augmented by Kindlin 2". En American Thoracic Society 2021 International Conference, May 14-19, 2021 - San Diego, CA. American Thoracic Society, 2021. http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_meetingabstracts.a4369.
Texto completoChen, W., Y. Epshtein, A. Cress y J. R. Jacobson. "Augmentation of Kindlin-2 Expression Attenuates Endothelial Cell Permeability and Murine Acute Lung Injury". En American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a4674.
Texto completoPlow, Edward F., Mitali Das, Jamila Hirbawi y Khalid Sossey-Alaoui. "Abstract 405: Kindlin-2 regulates integrin function and sensitivity to docetaxel in prostate cancer cells". En Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-405.
Texto completoHernandez-Cortes, Daniel, Beatrice S. Knudsen, Noel A. Warfel y Anne E. Cress. "Abstract LB256: Dynamic kindlin-2 complexes containing a laminin-binding integrin are responsive to hypoxia". En Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-lb256.
Texto completo