Artículos de revistas sobre el tema "Kca1.1"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Kca1.1".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Takai, Jun, Alexandra Santu, Haifeng Zheng, Sang Don Koh, Masanori Ohta, Linda M. Filimban, Vincent Lemaître, Ryutaro Teraoka, Hanjoong Jo y Hiroto Miura. "Laminar shear stress upregulates endothelial Ca2+-activated K+ channels KCa2.3 and KCa3.1 via a Ca2+/calmodulin-dependent protein kinase kinase/Akt/p300 cascade". American Journal of Physiology-Heart and Circulatory Physiology 305, n.º 4 (15 de agosto de 2013): H484—H493. http://dx.doi.org/10.1152/ajpheart.00642.2012.
Texto completoZhang, Jin, Susan T. Halm y Dan R. Halm. "Role of the BK channel (KCa1.1) during activation of electrogenic K+ secretion in guinea pig distal colon". American Journal of Physiology-Gastrointestinal and Liver Physiology 303, n.º 12 (15 de diciembre de 2012): G1322—G1334. http://dx.doi.org/10.1152/ajpgi.00325.2012.
Texto completoSrivastava, Shekhar, Papiya Choudhury, Zhai Li, GongXin Liu, Vivek Nadkarni, Kyung Ko, William A. Coetzee y Edward Y. Skolnik. "Phosphatidylinositol 3-Phosphate Indirectly Activates KCa3.1 via 14 Amino Acids in the Carboxy Terminus of KCa3.1". Molecular Biology of the Cell 17, n.º 1 (enero de 2006): 146–54. http://dx.doi.org/10.1091/mbc.e05-08-0763.
Texto completoNakamoto, Tetsuji, Victor G. Romanenko, Atsushi Takahashi, Ted Begenisich y James E. Melvin. "Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland". American Journal of Physiology-Cell Physiology 294, n.º 3 (marzo de 2008): C810—C819. http://dx.doi.org/10.1152/ajpcell.00511.2007.
Texto completoStoneking, Colin J., Oshini Shivakumar, David Nicholson Thomas, William H. Colledge y Michael J. Mason. "Voltage dependence of the Ca2+-activated K+channel KCa3.1 in human erythroleukemia cells". American Journal of Physiology-Cell Physiology 304, n.º 9 (1 de mayo de 2013): C858—C872. http://dx.doi.org/10.1152/ajpcell.00368.2012.
Texto completoOhya, Susumu, Junko Kajikuri, Kyoko Endo, Hiroaki Kito y Miki Matsui. "KCa1.1 K+ Channel Inhibition Overcomes Resistance to Antiandrogens and Doxorubicin in a Human Prostate Cancer LNCaP Spheroid Model". International Journal of Molecular Sciences 22, n.º 24 (17 de diciembre de 2021): 13553. http://dx.doi.org/10.3390/ijms222413553.
Texto completoRehak, Renata, Theodore M. Bartoletti, Jordan D. T. Engbers, Geza Berecki, Ray W. Turner y Gerald W. Zamponi. "Low Voltage Activation of KCa1.1 Current by Cav3-KCa1.1 Complexes". PLoS ONE 8, n.º 4 (23 de abril de 2013): e61844. http://dx.doi.org/10.1371/journal.pone.0061844.
Texto completoSones, WR, N. Leblanc y IA Greenwood. "Inhibition of vascular calcium-gated chloride currents by blockers of KCa1.1, but not by modulators of KCa2.1 or KCa2.3 channels". British Journal of Pharmacology 158, n.º 2 (23 de julio de 2009): 521–31. http://dx.doi.org/10.1111/j.1476-5381.2009.00332.x.
Texto completoXin, Wenkuan, Qiuping Cheng, Rupal P. Soder, Eric S. Rovner y Georgi V. Petkov. "Constitutively active phosphodiesterase activity regulates urinary bladder smooth muscle function: critical role of KCa1.1 channel". American Journal of Physiology-Renal Physiology 303, n.º 9 (1 de noviembre de 2012): F1300—F1306. http://dx.doi.org/10.1152/ajprenal.00351.2012.
Texto completoLi, Bai-Yan, Patricia Glazebrook, Diana L. Kunze y John H. Schild. "KCa1.1 channel contributes to cell excitability in unmyelinated but not myelinated rat vagal afferents". American Journal of Physiology-Cell Physiology 300, n.º 6 (junio de 2011): C1393—C1403. http://dx.doi.org/10.1152/ajpcell.00278.2010.
Texto completoOrfali, Razan y Nora Albanyan. "Ca2+-Sensitive Potassium Channels". Molecules 28, n.º 2 (16 de enero de 2023): 885. http://dx.doi.org/10.3390/molecules28020885.
Texto completoMatos, J. E., M. Sausbier, G. Beranek, U. Sausbier, P. Ruth y J. Leipziger. "Role of cholinergic-activated KCa1.1 (BK), KCa3.1 (SK4) and KV7.1 (KCNQ1) channels in mouse colonic Cl?secretion". Acta Physiologica 189, n.º 3 (marzo de 2007): 251–58. http://dx.doi.org/10.1111/j.1748-1716.2006.01646.x.
Texto completoHarron, Scott A., Christina M. Clarke, Christina L. Jones, Dominique Babin-Muise y Elizabeth A. Cowley. "Volume regulation in the human airway epithelial cell line Calu-3". Canadian Journal of Physiology and Pharmacology 87, n.º 5 (mayo de 2009): 337–46. http://dx.doi.org/10.1139/y09-009.
Texto completoGolder, Francis J., Scott Dax, Santhosh M. Baby, Ryan Gruber, Toshinori Hoshi, Courtney Ideo, Andrew Kennedy et al. "Identification and Characterization of GAL-021 as a Novel Breathing Control Modulator". Anesthesiology 123, n.º 5 (1 de noviembre de 2015): 1093–104. http://dx.doi.org/10.1097/aln.0000000000000844.
Texto completoLarsen, Casper K., Iben S. Jensen, Mads V. Sorensen, Pauline I. de Bruijn, Markus Bleich, Helle A. Praetorius y Jens Leipziger. "Hyperaldosteronism after decreased renal K+ excretion in KCNMB2 knockout mice". American Journal of Physiology-Renal Physiology 310, n.º 10 (15 de mayo de 2016): F1035—F1046. http://dx.doi.org/10.1152/ajprenal.00010.2016.
Texto completoBeeton, Christine. "KCa1.1 channels as therapeutic targets for rheumatoid arthritis". Expert Opinion on Therapeutic Targets 21, n.º 12 (31 de octubre de 2017): 1077–81. http://dx.doi.org/10.1080/14728222.2017.1398234.
Texto completoBrizzi, Antonella, Alfonso Trezza, Ottavia Spiga, Samuele Maramai, Francesco Scorzelli, Simona Saponara y Fabio Fusi. "2-Hydroxy-5-(3,5,7-trihydroxy-4-oxo-4H-chromen-2-yl)phenyl (E)-3-(4-hydroxy-3-methoxyphenyl)acrylate: Synthesis, In Silico Analysis and In Vitro Pharmacological Evaluation". Molbank 2021, n.º 3 (23 de julio de 2021): M1258. http://dx.doi.org/10.3390/m1258.
Texto completoMészáros, Beáta, Agota Csoti, Tibor G. Szanto, Andrea Telek, Katalin Kovács, Agnes Toth, Julianna Volkó y Gyorgy Panyi. "The hEag1 K+ Channel Inhibitor Astemizole Stimulates Ca2+ Deposition in SaOS-2 and MG-63 Osteosarcoma Cultures". International Journal of Molecular Sciences 23, n.º 18 (11 de septiembre de 2022): 10533. http://dx.doi.org/10.3390/ijms231810533.
Texto completoSørensen, Mads V., Joana E. Matos, Matthias Sausbier, Ulrike Sausbier, Peter Ruth, Helle A. Praetorius y Jens Leipziger. "Aldosterone increases KCa1.1 (BK) channel-mediated colonic K+secretion". Journal of Physiology 586, n.º 17 (1 de septiembre de 2008): 4251–64. http://dx.doi.org/10.1113/jphysiol.2008.156968.
Texto completoDenes Petho, Zoltan, Andras Balajthy, Almos Klekner, Laszlo Bognar, Zoltan Varga y Gyorgy Panyi. "KCa1.1 Channel Auxiliary Beta Subunit Composition in Glioblastoma Multiforme". Biophysical Journal 112, n.º 3 (febrero de 2017): 546a. http://dx.doi.org/10.1016/j.bpj.2016.11.2952.
Texto completoCarullo, Gabriele, Simona Saponara, Amer Ahmed, Beatrice Gorelli, Sarah Mazzotta, Alfonso Trezza, Beatrice Gianibbi, Giuseppe Campiani, Fabio Fusi y Francesca Aiello. "Novel Labdane Diterpenes-Based Synthetic Derivatives: Identification of a Bifunctional Vasodilator That Inhibits CaV1.2 and Stimulates KCa1.1 Channels". Marine Drugs 20, n.º 8 (13 de agosto de 2022): 515. http://dx.doi.org/10.3390/md20080515.
Texto completoEngbers, Jordan DT, Gerald W. Zamponi y Ray W. Turner. "Modeling interactions between voltage-gated Ca2+channels and KCa1.1 channels". Channels 7, n.º 6 (2 de noviembre de 2013): 524–29. http://dx.doi.org/10.4161/chan.25867.
Texto completoOrtiz, Mario I., Raquel Cariño-Cortés, Víctor M. Muñoz-Pérez, Carlo Eduardo Medina-Solís y Gilberto Castañeda-Hernández. "Citral inhibits the nociception in the rat formalin test: effect of metformin and blockers of opioid receptor and the NO-cGMP-K+ channel pathway". Canadian Journal of Physiology and Pharmacology 100, n.º 4 (abril de 2022): 306–13. http://dx.doi.org/10.1139/cjpp-2021-0458.
Texto completoRomanenko, Victor G., Kurt S. Roser, James E. Melvin y Ted Begenisich. "The role of cell cholesterol and the cytoskeleton in the interaction between IK1 and maxi-K channels". American Journal of Physiology-Cell Physiology 296, n.º 4 (abril de 2009): C878—C888. http://dx.doi.org/10.1152/ajpcell.00438.2008.
Texto completoGonzalez-Perez, Vivian, Manu Ben Johny, Xiao-Ming Xia y Christopher J. Lingle. "Regulatory γ1 subunits defy symmetry in functional modulation of BK channels". Proceedings of the National Academy of Sciences 115, n.º 40 (17 de septiembre de 2018): 9923–28. http://dx.doi.org/10.1073/pnas.1804560115.
Texto completoNayak, Tapan K., Ridhima Vij, Iva Bruhova, Jayasha Shandilya y Anthony Auerbach. "Efficiency measures the conversion of agonist binding energy into receptor conformational change". Journal of General Physiology 151, n.º 4 (11 de enero de 2019): 465–77. http://dx.doi.org/10.1085/jgp.201812215.
Texto completoSørensen, Mads V., Matthias Sausbier, Peter Ruth, Ursula Seidler, Brigitte Riederer, Helle A. Praetorius y Jens Leipziger. "Adrenaline-induced colonic K+secretion is mediated by KCa1.1 (BK) channels". Journal of Physiology 588, n.º 10 (14 de mayo de 2010): 1763–77. http://dx.doi.org/10.1113/jphysiol.2009.181933.
Texto completoBentzen, Bo H., Antonio Nardi, Søren P. Olesen y Morten Grunnet. "Novel large conductance calcium- and voltage-activated K+ channel (KCa1.1) modulator". Journal of Molecular and Cellular Cardiology 42, n.º 6 (junio de 2007): S17. http://dx.doi.org/10.1016/j.yjmcc.2007.03.048.
Texto completoAsano, Shinichi, Johnathan D. Tune y Gregory M. Dick. "Bisphenol A activates Maxi-K (KCa1.1) channels in coronary smooth muscle". British Journal of Pharmacology 160, n.º 1 (19 de marzo de 2010): 160–70. http://dx.doi.org/10.1111/j.1476-5381.2010.00687.x.
Texto completoOrtiz, Mario I., Raquel Cariño-Cortés y Gilberto Castañeda-Hernández. "Participation of the opioid receptor – nitric oxide – cGMP – K+ channel pathway in the peripheral antinociceptive effect of nalbuphine and buprenorphine in rats". Canadian Journal of Physiology and Pharmacology 98, n.º 11 (noviembre de 2020): 753–62. http://dx.doi.org/10.1139/cjpp-2020-0104.
Texto completoSteffensen, Simon G. Comerma, Judit Prat Duran, Susie Mogensen, Rafael S. Fais, Estefano Pinilla y Prof Ulf Simonsen. "Erectile dysfunction and altered contribution of kCa1.1 and kCa2.3 channels in penile tissue of type-2 diabetic db/db mice". Journal of Sexual Medicine 19, n.º 11 (noviembre de 2022): S1. http://dx.doi.org/10.1016/j.jsxm.2022.08.075.
Texto completoAlmássy, János y Péter P. Nánási. "Brief structural insight into the allosteric gating mechanism of BK (Slo1) channel". Canadian Journal of Physiology and Pharmacology 97, n.º 6 (junio de 2019): 498–502. http://dx.doi.org/10.1139/cjpp-2018-0516.
Texto completoKloza, Baranowska-Kuczko, Toczek, Kusaczuk, Sadowska, Kasacka y Kozłowska. "Modulation of Cardiovascular Function in Primary Hypertension in Rat by SKA-31, an Activator of KCa2.x and KCa3.1 Channels". International Journal of Molecular Sciences 20, n.º 17 (23 de agosto de 2019): 4118. http://dx.doi.org/10.3390/ijms20174118.
Texto completoOhya, Susumu, Yuka Fukuyo, Hiroaki Kito, Rina Shibaoka, Miki Matsui, Hiroki Niguma, Yasuhiro Maeda et al. "Upregulation of KCa3.1 K+ channel in mesenteric lymph node CD4+ T lymphocytes from a mouse model of dextran sodium sulfate-induced inflammatory bowel disease". American Journal of Physiology-Gastrointestinal and Liver Physiology 306, n.º 10 (15 de mayo de 2014): G873—G885. http://dx.doi.org/10.1152/ajpgi.00156.2013.
Texto completoGonzalez-Perez, Vivian y Christopher J. Lingle. "Regulation of BK Channels by Beta and Gamma Subunits". Annual Review of Physiology 81, n.º 1 (10 de febrero de 2019): 113–37. http://dx.doi.org/10.1146/annurev-physiol-022516-034038.
Texto completoThompson, Jill y Ted Begenisich. "Membrane-delimited Inhibition of Maxi-K Channel Activity by the Intermediate Conductance Ca2+-activated K Channel". Journal of General Physiology 127, n.º 2 (17 de enero de 2006): 159–69. http://dx.doi.org/10.1085/jgp.200509457.
Texto completoIozzi, D., R. Schubert, V. U. Kalenchuk, A. Neri, G. Sgaragli, F. Fusi y S. Saponara. "Quercetin relaxes rat tail main artery partlyviaa PKG-mediated stimulation of KCa1.1 channels". Acta Physiologica 208, n.º 4 (25 de marzo de 2013): 329–39. http://dx.doi.org/10.1111/apha.12083.
Texto completoZhang, Jiao, Yau-Chi Chan, Jenny Chung-Yee Ho, Chung-Wah Siu, Qizhou Lian y Hung-Fat Tse. "Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-à-go-go 1 (hEAG1) potassium channel". American Journal of Physiology-Cell Physiology 303, n.º 2 (15 de julio de 2012): C115—C125. http://dx.doi.org/10.1152/ajpcell.00326.2011.
Texto completoKloza, Monika, Marta Baranowska-Kuczko, Olga Karpińska y Hanna Kozłowska. "The role of small and intermediate conductance calcium-activated potassium channels in endothelial-dependent hyperpolarization in physiology and arterial hypertension". Postępy Higieny i Medycyny Doświadczalnej 73 (9 de enero de 2019): 1–14. http://dx.doi.org/10.5604/01.3001.0012.8388.
Texto completoTarasov, Michail V., Marina F. Bystrova, Polina D. Kotova, Olga A. Rogachevskaja, Veronika Y. Sysoeva y Stanislav S. Kolesnikov. "Calcium-gated K+ channels of the KCa1.1- and KCa3.1-type couple intracellular Ca2+ signals to membrane hyperpolarization in mesenchymal stromal cells from the human adipose tissue". Pflügers Archiv - European Journal of Physiology 469, n.º 2 (27 de diciembre de 2016): 349–62. http://dx.doi.org/10.1007/s00424-016-1932-4.
Texto completoTanner, Mark R., Zoltan Petho, Rajeev B. Tajhya, Redwan Huq, Frank T. Horrigan, Percio S. Gulco y Christine Beeton. "KCa1.1 (BK) Channels on Fibroblast-Like Synoviocytes: A Novel Therapeutic Target for Rheumatoid Arthritis". Biophysical Journal 108, n.º 2 (enero de 2015): 587a. http://dx.doi.org/10.1016/j.bpj.2014.11.3202.
Texto completoMorales, Patricia, Line Garneau, Hélène Klein, Marie-France Lavoie, Lucie Parent y Rémy Sauvé. "Contribution of the KCa3.1 channel–calmodulin interactions to the regulation of the KCa3.1 gating process". Journal of General Physiology 142, n.º 1 (24 de junio de 2013): 37–60. http://dx.doi.org/10.1085/jgp.201210933.
Texto completoSuzuki, Yoshiaki, Hisao Yamamura, Susumu Ohya y Yuji Imaizumi. "Direct molecular interaction of caveolin-3 with KCa1.1 channel in living HEK293 cell expression system". Biochemical and Biophysical Research Communications 430, n.º 3 (enero de 2013): 1169–74. http://dx.doi.org/10.1016/j.bbrc.2012.12.015.
Texto completoSørensen, Mads V., Anne B. Strandsby, Casper K. Larsen, Helle A. Praetorius y Jens Leipziger. "The secretory KCa1.1 channel localises to crypts of distal mouse colon: functional and molecular evidence". Pflügers Archiv - European Journal of Physiology 462, n.º 5 (6 de agosto de 2011): 745–52. http://dx.doi.org/10.1007/s00424-011-1000-z.
Texto completoHu, Xueyou, Teresina Laragione, Liang Sun, Shyny Koshy, Karlie R. Jones, Iskander I. Ismailov, Patricia Yotnda, Frank T. Horrigan, Pércio S. Gulko y Christine Beeton. "KCa1.1 Potassium Channels Regulate Key Proinflammatory and Invasive Properties of Fibroblast-like Synoviocytes in Rheumatoid Arthritis". Journal of Biological Chemistry 287, n.º 6 (10 de noviembre de 2011): 4014–22. http://dx.doi.org/10.1074/jbc.m111.312264.
Texto completoShi, Lijun, Hanmeng Zhang, Yu Chen, Yujia Liu, Ni Lu, Tengteng Zhao y Lubo Zhang. "Chronic exercise normalizes changes in Cav1.2 and KCa1.1 channels in mesenteric arteries from spontaneously hypertensive rats". British Journal of Pharmacology 172, n.º 7 (23 de enero de 2015): 1846–58. http://dx.doi.org/10.1111/bph.13035.
Texto completoBertrand, Jacques A., Martin Schicht, W. Daniel Stamer, David Baker, Joseph M. Sherwood, Elke Lütjen-Drecoll, David L. Selwood y Darryl R. Overby. "The β4-Subunit of the Large-Conductance Potassium Ion Channel KCa1.1 Regulates Outflow Facility in Mice". Investigative Opthalmology & Visual Science 61, n.º 3 (23 de marzo de 2020): 41. http://dx.doi.org/10.1167/iovs.61.3.41.
Texto completoTanner, Mark R., Michael W. Pennington, Teresina Laragione, Pércio S. Gulko y Christine Beeton. "KCa1.1 channels regulate β 1 ‐integrin function and cell adhesion in rheumatoid arthritis fibroblast‐like synoviocytes". FASEB Journal 31, n.º 8 (agosto de 2017): 3309–20. http://dx.doi.org/10.1096/fj.201601097r.
Texto completoCarullo, Gabriele, Amer Ahmed, Alfonso Trezza, Ottavia Spiga, Antonella Brizzi, Simona Saponara, Fabio Fusi y Francesca Aiello. "Design, synthesis and pharmacological evaluation of ester-based quercetin derivatives as selective vascular KCa1.1 channel stimulators". Bioorganic Chemistry 105 (diciembre de 2020): 104404. http://dx.doi.org/10.1016/j.bioorg.2020.104404.
Texto completoXu, Wen-Xiao, Tao Ban, Lu-Qi Wang, Miao Zhao, Lei Yin, Guo Li, Hanying Chen et al. "KCa1.1 β4-subunits are not responsible for iberiotoxin-resistance in baroreceptor neurons in adult male rats". International Journal of Cardiology 178 (enero de 2015): 184–87. http://dx.doi.org/10.1016/j.ijcard.2014.10.128.
Texto completo