Literatura académica sobre el tema "K-theory"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "K-theory".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "K-theory"
Ausoni, Christian y John Rognes. "Algebraic K-theory of topological K-theory". Acta Mathematica 188, n.º 1 (2002): 1–39. http://dx.doi.org/10.1007/bf02392794.
Texto completoMitchell, Stephen A. "Topological K-Theory of Algebraic K-Theory Spectra". K-Theory 21, n.º 3 (noviembre de 2000): 229–47. http://dx.doi.org/10.1023/a:1026580718473.
Texto completoFelisatti, Marcello. "Multiplicative K-theory and K-theory of Functors". Mediterranean Journal of Mathematics 5, n.º 4 (diciembre de 2008): 493–99. http://dx.doi.org/10.1007/s00009-008-0163-0.
Texto completoBouwknegt, Peter, Alan L. Carey, Varghese Mathai, Michael K. Murray y Danny Stevenson. "Twisted K-Theory and K-Theory of Bundle Gerbes". Communications in Mathematical Physics 228, n.º 1 (1 de junio de 2002): 17–49. http://dx.doi.org/10.1007/s002200200646.
Texto completoLoday, Jean-Louis. "Algebraic K-Theory and the Conjectural Leibniz K-Theory". K-Theory 30, n.º 2 (octubre de 2003): 105–27. http://dx.doi.org/10.1023/b:kthe.0000018382.90150.ce.
Texto completoKobal, Damjan. "K-Theory, Hermitian K-Theory and the Karoubi Tower". K-Theory 17, n.º 2 (junio de 1999): 113–40. http://dx.doi.org/10.1023/a:1007799508729.
Texto completoCharles Jones, Kevin, Youngsoo Kim, Andrea H. Mhoon, Rekha Santhanam, Barry J. Walker y Daniel R. Grayson. "The Additivity Theorem in K-Theory". K-Theory 32, n.º 2 (junio de 2004): 181–91. http://dx.doi.org/10.1023/b:kthe.0000037546.39459.cb.
Texto completoCoutinho, Severino Collier y Hvedri Inassaridze. "Algebraic K-Theory". Mathematical Gazette 81, n.º 490 (marzo de 1997): 167. http://dx.doi.org/10.2307/3618817.
Texto completoGeisser, Thomas, Lars Hesselholt, Annette Huber-Klawitter y Moritz Kerz. "Algebraic K-theory". Oberwolfach Reports 16, n.º 2 (3 de junio de 2020): 1737–90. http://dx.doi.org/10.4171/owr/2019/29.
Texto completoChowdhry, Maya. "k/not theory". Journal of Lesbian Studies 4, n.º 4 (diciembre de 2000): 59–70. http://dx.doi.org/10.1300/j155v04n04_05.
Texto completoTesis sobre el tema "K-theory"
Gritschacher, Simon. "Commutative K-theory". Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:5d5b0e20-20ef-4eec-a032-8bcb5fe59884.
Texto completoLevikov, Filipp. "L-theory, K-theory and involutions". Thesis, University of Aberdeen, 2013. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=201918.
Texto completoTakeda, Yuichiro. "Localization theorem in equivariant algebraic K-theory". 京都大学 (Kyoto University), 1997. http://hdl.handle.net/2433/202419.
Texto completoStefański, Bogdan. "String theory, dirichlet branes and K-theory". Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621023.
Texto completoBraun, Volker Friedrich. "K-theory and exceptional holonomy in string theory". Doctoral thesis, [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965401650.
Texto completoMitchener, Paul David. "K-theory of C*-categories". Thesis, University of Oxford, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365771.
Texto completoZakharevich, Inna (Inna Ilana). "Scissors congruence and K-theory". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73376.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (p. 83-84).
In this thesis we develop a version of classical scissors congruence theory from the perspective of algebraic K-theory. Classically, two polytopes in a manifold X are defined to be scissors congruent if they can be decomposed into finite sets of pairwise-congruent polytopes. We generalize this notion to an abstract problem: given a set of objects and decomposition and congruence relations between them, when are two objects in the set scissors congruent? By packaging the scissors congruence information in a Waldhausen category we construct a spectrum whose homotopy groups include information about the scissors congruence problem. We then turn our attention to generalizing constructions from the classical case to these Waldhausen categories, and find constructions for cofibers, suspensions, and products of scissors congruence problems.
by Inna Zakharevich.
Ph.D.
Cain, Christopher. "K-theory of Fermat curves". Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/262483.
Texto completoBunch, Eric. "K-Theory in categorical geometry". Diss., Kansas State University, 2015. http://hdl.handle.net/2097/20350.
Texto completoDepartment of Mathematics
Zongzhu Lin
In the endeavor to study noncommutative algebraic geometry, Alex Rosenberg defined in [13] the spectrum of an Abelian category. This spectrum generalizes the prime spectrum of a commutative ring in the sense that the spectrum of the Abelian category R − mod is homeomorphic to the prime spectrum of R. This spectrum can be seen as the beginning of “categorical geometry”, and was used in [15] to study noncommutative algebriac geometry. In this thesis, we are concerned with geometries extending beyond traditional algebraic geometry coming from the algebraic structure of rings. We consider monoids in a monoidal category as the appropriate generalization of rings–rings being monoids in the monoidal category of Abelian groups. Drawing inspiration from the definition of the spectrum of an Abelian category in [13], and the exploration of it in [15], we define the spectrum of a monoidal category, which we will call the monoidal spectrum. We prove a descent condition which is the mathematical formalization of the statment “R − mod is the category of quasi-coherent sheaves on the monoidal spectrum of R − mod”. In addition, we prove a functoriality condidition for the spectrum, and show that for a commutative Noetherian ring, the monoidal spectrum of R − mod is homeomorphic to the prime spectrum of the ring R. In [1], Paul Balmer defined the prime tensor ideal spectrum of a tensor triangulated cat- gory; this can be thought of as the beginning of “tensor triangulated categorical geometry”. This definition is very transparent and digestible, and is the inspiration for the definition in this thesis of the prime tensor ideal spectrum of an monoidal Abelian category. It it shown that for a polynomial identity ring R such that the catgory R − mod is monoidal Abelian, the prime tensor ideal spectrum is homeomorphic to the prime ideal spectrum.
Hedlund, William. "K-Theory and An-Spaces". Thesis, Uppsala universitet, Algebra och geometri, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414082.
Texto completoLibros sobre el tema "K-theory"
Atiyah, Michael Francis. K-theory. Redwood City, Calif: Addison-Wesley Pub. Co., Advanced Book Program, 1989.
Buscar texto completoSrinivas, V. Algebraic K-theory. Boston: Birkhäuser, 1991.
Buscar texto completoInassaridze, H. Algebraic K-theory. Dordrecht: Kluwer Academic Publishers, 1995.
Buscar texto completoSrinivas, V. Algebraic K-theory. 2a ed. Boston: Birkhäuser, 1996.
Buscar texto completoSrinivas, V. Algebraic K-Theory. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-0-8176-4739-1.
Texto completoInassaridze, Hvedri. Algebraic K-Theory. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8569-9.
Texto completoSrinivas, V. Algebraic K-Theory. Boston, MA: Birkhäuser Boston, 1991. http://dx.doi.org/10.1007/978-1-4899-6735-0.
Texto completoInternational Meeting on K-theory (1992 : Institut de recherche mathématique avancée), ed. K-theory: Strasbourg, 1992. Paris: Société mathématique de France, 1994.
Buscar texto completoPenner, Robert. Topology and K-Theory. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43996-5.
Texto completoKiechle, Hubert. Theory of K-Loops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/b83276.
Texto completoCapítulos de libros sobre el tema "K-theory"
Abrams, Gene, Pere Ara y Mercedes Siles Molina. "K-Theory". En Lecture Notes in Mathematics, 219–57. London: Springer London, 2017. http://dx.doi.org/10.1007/978-1-4471-7344-1_6.
Texto completoShafarevich, Igor R. "K-theory". En Encyclopaedia of Mathematical Sciences, 230–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26474-4_22.
Texto completoMukherjee, Amiya. "K-Theory". En Atiyah-Singer Index Theorem, 1–34. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-60-6_1.
Texto completoStrung, Karen R. "K-theory". En Advanced Courses in Mathematics - CRM Barcelona, 175–200. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47465-2_12.
Texto completoLevine, Marc. "K-theory". En Mixed Motives, 357–69. Providence, Rhode Island: American Mathematical Society, 1998. http://dx.doi.org/10.1090/surv/057/08.
Texto completoAguilar, Marcelo, Samuel Gitler y Carlos Prieto. "K-Theory". En Universitext, 289–307. New York, NY: Springer New York, 2002. http://dx.doi.org/10.1007/0-387-22489-0_9.
Texto completoHusemoller, Dale. "Relative K-Theory". En Graduate Texts in Mathematics, 122–39. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-2261-1_10.
Texto completoMukherjee, Amiya. "Equivariant K-Theory". En Atiyah-Singer Index Theorem, 178–99. Gurgaon: Hindustan Book Agency, 2013. http://dx.doi.org/10.1007/978-93-86279-60-6_7.
Texto completoDundas, Bjørn Ian, Thomas G. Goodwillie y Randy McCarthy. "Algebraic K-Theory". En The Local Structure of Algebraic K-Theory, 1–61. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4393-2_1.
Texto completoFeigin, B. L. y B. L. Tsygan. "Additive K-theory". En K-Theory, Arithmetic and Geometry, 67–209. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078368.
Texto completoActas de conferencias sobre el tema "K-theory"
D'Ambrosio, Giancarlo. "Theory of rare $K$ decays". En 9th International Workshop on the CKM Unitarity Triangle. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.291.0061.
Texto completoTamaki, Dai. "Twisting Segal's K-Homology Theory". En Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0007.
Texto completoD'Ambrosio, Giancarlo. "Theory of rare K decays". En The International Conference on B-Physics at Frontier Machines. Trieste, Italy: Sissa Medialab, 2018. http://dx.doi.org/10.22323/1.326.0027.
Texto completoMishchenko, Alexandr S. "K-theory over C*-algebras". En Geometry and Topology of Manifolds. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc76-0-13.
Texto completoJardine, John F. "The K–theory presheaf of spectra". En New topological contexts for Galois theory and algebraic geometry. Mathematical Sciences Publishers, 2009. http://dx.doi.org/10.2140/gtm.2009.16.151.
Texto completoJOACHIM, MICHAEL. "UNBOUNDED FREDHOLM OPERATORS AND K-THEORY". En Proceedings of the School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812704443_0009.
Texto completoBass, H., A. O. Kuku y C. Pedrini. "Algebraic K-Theory and its Applications". En Workshop and Symposium. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814528474.
Texto completoSzabo, Richard J. "D-Branes and Bivariant K-Theory". En Proceedings of the Noncommutative Geometry and Physics 2008, on K-Theory and D-Branes & Proceedings of the RIMS Thematic Year 2010 on Perspectives in Deformation Quantization and Noncommutative Geometry. WORLD SCIENTIFIC, 2013. http://dx.doi.org/10.1142/9789814425018_0005.
Texto completoNabeebaccus, Saad y Roman Zwicky. "On the $ R_{K} $ theory error". En 11th International Workshop on the CKM Unitarity Triangle. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.411.0071.
Texto completoSATI, H. "SOME RELATIONS BETWEEN TWISTED K-THEORY AND E8 GAUGE THEORY". En Proceedings of the 32nd Coral Gables Conference. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701992_0049.
Texto completoInformes sobre el tema "K-theory"
Falco, Domenico y Alessandro Giulini. Asymptotic Modeling of Wave Functions, Regular Curves and Riemannian K-Theory. Web of Open Science, febrero de 2020. http://dx.doi.org/10.37686/qrl.v1i1.3.
Texto completoAdams, Allan W. Strings, Branes and K-Theory from E{sub 8} Bundles in 11 Dimensions. Office of Scientific and Technical Information (OSTI), agosto de 2002. http://dx.doi.org/10.2172/799922.
Texto completoMARKOV, R. S., E. A. BURTSEVA y E. I. SHURUPOVA. THE ORIGIN OF THE STATE IN THE SOCIO-PHILOSOPHICAL PARADIGM K. LEONTIEV. Science and Innovation Center Publishing House, abril de 2022. http://dx.doi.org/10.12731/2077-1770-2021-14-1-2-29-37.
Texto completoMuller, L., G. Yang y V. Comalino. Integrability in Constructive K-Theory mathematical model for operation algorithms of an airship anti-stealth radar. Web of Open Science, febrero de 2020. http://dx.doi.org/10.37686/ser.v1i1.2.
Texto completoMacFarlane, Andrew. 2021 medical student essay prize winner - A case of grief. Society for Academic Primary Care, julio de 2021. http://dx.doi.org/10.37361/medstudessay.2021.1.1.
Texto completo