Índice
Literatura académica sobre el tema "Jump-like deformation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Jump-like deformation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Jump-like deformation"
Kawabe, Takahiro. "Perceiving Animacy From Deformation and Translation". i-Perception 8, n.º 3 (17 de mayo de 2017): 204166951770776. http://dx.doi.org/10.1177/2041669517707767.
Texto completoMüller, Toni, Jens-Uwe Sommer y Michael Lang. "Tendomers – force sensitive bis-rotaxanes with jump-like deformation behavior". Soft Matter 15, n.º 18 (2019): 3671–79. http://dx.doi.org/10.1039/c9sm00292h.
Texto completoYasnii, P. V., Yu I. Pyndus, V. B. Hlad’o y I. V. Shul’han. "Computer modeling of the jump-like deformation of AMg6 alloy". Materials Science 44, n.º 1 (enero de 2008): 43–48. http://dx.doi.org/10.1007/s11003-008-9041-y.
Texto completoFedak, Serhii, Oleg Yasnii, Iryna Didych y Nadiya Kryva. "Characteristics of the deformation diagram of AMg6 alloy". Scientific journal of the Ternopil national technical university 110, n.º 2 (2023): 33–39. http://dx.doi.org/10.33108/visnyk_tntu2023.02.033.
Texto completoLebedev, V. P., V. S. Krylovskiĭ, S. V. Lebedev y S. V. Savich. "Low-amplitude jump-like deformation of Pb–In alloys in the superconducting state". Low Temperature Physics 34, n.º 3 (marzo de 2008): 234–40. http://dx.doi.org/10.1063/1.2889412.
Texto completoYasniy, Oleh, Iryna Didych, Sergiy Fedak y Yuri Lapusta. "Modeling of AMg6 aluminum alloy jump-like deformation properties by machine learning methods". Procedia Structural Integrity 28 (2020): 1392–98. http://dx.doi.org/10.1016/j.prostr.2020.10.110.
Texto completoDolgin, A. M. y V. Z. Bengus. "Kinetics of high-velocity processes of low temperature jump-like deformation of niobium". physica status solidi (a) 94, n.º 2 (16 de abril de 1986): 529–35. http://dx.doi.org/10.1002/pssa.2210940212.
Texto completoKirichenko, G. I., V. D. Natsik, V. V. Pustovalov, V. P. Soldatov y S. E. Shumilin. "Jump-like deformation of single crystals of Sn–Cd alloys at temperatures ≲1 K". Low Temperature Physics 23, n.º 9 (septiembre de 1997): 758–64. http://dx.doi.org/10.1063/1.593374.
Texto completoPustovalov, V. V. "Influence of superconducting transition on low temperature jump-like deformation of metals and alloys". Materials Science and Engineering: A 234-236 (agosto de 1997): 157–60. http://dx.doi.org/10.1016/s0921-5093(97)00151-2.
Texto completoMizutani, Yasushi, Susumu Tamai, Toshifumi Nakamura, Takehiko Takita y Shohei Omokawa. "Magnetic Resonance Imaging Evaluation of Acute Plastic Deformation of a Pediatric Radius". Journal of Hand Surgery (Asian-Pacific Volume) 26, n.º 02 (11 de enero de 2021): 280–83. http://dx.doi.org/10.1142/s2424835521720085.
Texto completoTesis sobre el tema "Jump-like deformation"
Didych, Iryna. "Estimation of structural integrity and lifetime of important structural elements". Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2021. http://www.theses.fr/2021UCFAC116.
Texto completoThis work has been performed under co-tutelle supervision between Ternopil IvanPuluj National Technical University in Ternopil (Ukraine) and UniversityClermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal in Clermont-Ferrand (France).This thesis solves the scientific task of responsible structural elements strength andlifetime evaluation. The aim of the thesis is to evaluate the strength and residuallifetime of structural elements by machine learning methods.Most parts of machines and structural elements while being in service are under theinfluence of loads of various nature. Such forces are applied either directly to theelement or transmitted through neighbor elements connected to it. For the normaloperation of the responsible structures parts, each element must have certain sizeand shape that will withstand the loads acting on it. In particular, it must haveappropriate strength properties, not deform significantly under the action ofstresses, be rigid, and preserve its original shape.The calculated residual lifetime of machines and structures can be predicted usingfatigue crack growth (FCG) diagrams. Often, the experimental data have a certainspread, which should be taken into account in their analysis. The experimentalmethod often takes a lot of time and human resources. Therefore, it is advisable tolearn how to calculate the residual lifetime using machine learning methods,particularly, neural networks, boosted trees, random forests, support-vectormachines and the method of k–nearest neighbors