Literatura académica sobre el tema "Isoprenoidi"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Isoprenoidi".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Isoprenoidi"
Guggisberg, Ann M., Rachel E. Amthor y Audrey R. Odom. "Isoprenoid Biosynthesis in Plasmodium falciparum". Eukaryotic Cell 13, n.º 11 (12 de septiembre de 2014): 1348–59. http://dx.doi.org/10.1128/ec.00160-14.
Texto completoDe Lillis, Manuela, Pietro Massimiliano Bianco y Francesco Loreto. "The influence of leaf water content and isoprenoids on flammability of some Mediterranean woody species". International Journal of Wildland Fire 18, n.º 2 (2009): 203. http://dx.doi.org/10.1071/wf07075.
Texto completoChatzivasileiou, Alkiviadis Orfefs, Valerie Ward, Steven McBride Edgar y Gregory Stephanopoulos. "Two-step pathway for isoprenoid synthesis". Proceedings of the National Academy of Sciences 116, n.º 2 (24 de diciembre de 2018): 506–11. http://dx.doi.org/10.1073/pnas.1812935116.
Texto completoMu, Zhaobin, Joan Llusià y Josep Peñuelas. "Ground Level Isoprenoid Exchanges Associated with Pinus pinea Trees in A Mediterranean Turf". Atmosphere 11, n.º 8 (31 de julio de 2020): 809. http://dx.doi.org/10.3390/atmos11080809.
Texto completoPhulara, Suresh Chandra, Preeti Chaturvedi y Pratima Gupta. "Isoprenoid-Based Biofuels: Homologous Expression and Heterologous Expression in Prokaryotes". Applied and Environmental Microbiology 82, n.º 19 (15 de julio de 2016): 5730–40. http://dx.doi.org/10.1128/aem.01192-16.
Texto completoChoi, Bo Hyun, Hyun Joon Kang, Sun Chang Kim y Pyung Cheon Lee. "Organelle Engineering in Yeast: Enhanced Production of Protopanaxadiol through Manipulation of Peroxisome Proliferation in Saccharomyces cerevisiae". Microorganisms 10, n.º 3 (18 de marzo de 2022): 650. http://dx.doi.org/10.3390/microorganisms10030650.
Texto completoPérez-Gil, Jordi y Manuel Rodríguez-Concepción. "Metabolic plasticity for isoprenoid biosynthesis in bacteria". Biochemical Journal 452, n.º 1 (25 de abril de 2013): 19–25. http://dx.doi.org/10.1042/bj20121899.
Texto completoMoehninsi, Iris Lange, B. Markus Lange y Duroy A. Navarre. "Altering potato isoprenoid metabolism increases biomass and induces early flowering". Journal of Experimental Botany 71, n.º 14 (16 de abril de 2020): 4109–24. http://dx.doi.org/10.1093/jxb/eraa185.
Texto completoJunker-Frohn, Laura Verena, Anita Kleiber, Kirstin Jansen, Arthur Gessler, Jürgen Kreuzwieser y Ingo Ensminger. "Differences in isoprenoid-mediated energy dissipation pathways between coastal and interior Douglas-fir seedlings in response to drought". Tree Physiology 39, n.º 10 (1 de octubre de 2019): 1750–66. http://dx.doi.org/10.1093/treephys/tpz075.
Texto completoDISCH, Andrea, Jörg SCHWENDER, Christian MÜLLER, Hartmut K. LICHTENTHALER y Michel ROHMER. "Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714". Biochemical Journal 333, n.º 2 (15 de julio de 1998): 381–88. http://dx.doi.org/10.1042/bj3330381.
Texto completoTesis sobre el tema "Isoprenoidi"
Keim, Ana Verónica Beatriz. "Metabolismo lipídico en "Arabidopsis thaliana": Caracterización de mutantes "arv" y de las isoenzimas farnesildifosfato sintasa citosólicas Ana Verónica Beatriz Keim 2012". Doctoral thesis, Universitat de Barcelona, 2012. http://hdl.handle.net/10803/96118.
Texto completoThe previously characterized Arabidopsis thaliana proteins AtArv1 and AtArv2 have been suggested to be involved in the regulation of cellular lipid homeostasis as demonstrated for their yeast and mammalian counterparts. In this study, we established the citosolic orientation of both N- and C-terminal ends of the AtArv1 protein in the yeast ER membrane. Functional complementation assays of an arv1Δ yeast strain with a truncated AtArv1 protein also showed that the C-terminal 31 aminoacids are essential for AtArv1 function. Characterization of single Arabidopsis arv mutants did not reveal any effect on plant phenotype. On the contrary, characterization of loss-of-function Arabidopsis arv1:arv2 double mutants obtained by inducible siRNA-mediated silencing of AtARV genes demonstrated that lack of AtArv function leads to reduced root lenght and pale green curved cotiledons as well as to reduced levels of major sterols and increased levels of some sphingolipid LCBs (Long Chain Bases). In contrast to S. cerevisiae Arv1p, AtArv is not involved in the UPR (Unfolded Protein Response) in Arabidopsis since lack of AtArv1 does not activate this response. Previous results obtained in our laboratory showed that Arabidopsis thaliana contains two genes encoding farnesyl diphosphate (FPP) synthase (FPS), the short-chain prenyl diphoshate synthase that catalyzes the synthesis of FPP from isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). The FPS1 gene is widely expressed in all plant tissues throughout development, whereas FPS2 shows a pattern of expression restricted to specific floral organs, developing and mature seeds. Characterization of fps single knock-out mutants suggested that FPS2 has a major role in seeds and during the early stages of seedling development. Actually, FPS2 provides 70-80% of total FPS activity in mature Arabidopsis seeds, hence lack of FPS2 activity in seeds leads to a marked reduction in sitosterol content and a positive feedback regulatory response of HMG-CoA reductase (HMGR) activity that renders seeds hypersensitive to mevastatin. In this study, we provide evidence that the two Arabidopsis short FPS isozymes FPS1S and FPS2 localize to the cytosol. Biochemical characterization of these recombinant enzymes expressed in E. coli, revealed that, despite FPS1S and FPS2 share more than 90% amino acid sequence identity, FPS2 is more efficient as a catalyst, more sensitive to the inhibitory effect of NaCl, and more resistant to thermal inactivation than FPS1S. Expression analysis of FPS::GUS genes in seeds also showed that FPS1 and FPS2 display complementary patterns of expression particularly at late stages of seed development, which suggests that developping Arabidopsis seeds have two spatially segregated sources of FPP. Functional complementation studies of the fps2 knock-out mutant seed phenotypes demonstrated that at least under normal conditions FPS1S and FPS2 are functionally interchangeable.
Lima, Valeria Bittencourt de. "Estudo fitoquimico de Himatanthus obovatus (Muell. Arg.) Woodson (APOCYNACEAE) : isolamento, elucidação estrutural e atividade biologica". [s.n.], 2005. http://repositorio.unicamp.br/jspui/handle/REPOSIP/249136.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Instituto de Quimica
Made available in DSpace on 2018-08-04T22:47:27Z (GMT). No. of bitstreams: 1 Lima_ValeriaBittencourtde_D.pdf: 9598037 bytes, checksum: 83f061fb32519074a309e1975981ace5 (MD5) Previous issue date: 2005
Resumo: Nosso trabalho tem por objetivo o isolamento e a elucidação estrutural dos metabólitos secundários de Himatanthus obovatus (família Apocynaceae, sub-família Rauvolfioideae). Apenas cinco espécies de Himatanthus já foram estudadas do ponto de vista químico. O material de H. obovatus utilizado nesse trabalho foi coletado na Chapada dos Guimarães (MT) e em Casa Branca (SP). Utilizando diferentes metodologias de extração e tratamento dos extratos etanólicos brutos foram isoladas 5 lignanas: pinoresinol, isolariciresinol, hidroxipinoresinol, lariciresinol e olivil; 3 nor-isoprenóides: blumenol C, blumenol A e um nor-isoprenóide inédito; o iridóide plumieride, misturas dos terpenos: acetato de lupeol + acetato de a-amirina + acetato de b-amirina + germanicol e stigmasterol + b-sitosterol + campesteroI a, após a acetilação do extrato etanólico bruto, o glicitol inositol. Os extratos Diclorometânico (CDCb) e Etanólico (CECb) da casca de H. obovatus (Casa Branca (SP) foram submetidos aos testes com Artemia salina Leach. e de atividade antiproliferativa frente à 4 linhagens celulares derivadas de tumores humanos: leucemia (K562), pulmão (NCI460), melanoma (UACC62) e mama (MCF7). Os resultados dos dois testes foram bastante coerentes, já que ambos mostraram resultados promissores para o extrato CDCb. Os testes de bioautografia foram realizados com os extratos da casca de H. obovatus (Casa Branca): CHCb (heptano), CDCb (diclorometano) e CECb (etanol) e com as substâncias isoladas: pinoresinol, isolariciresinol, blumenol C, blumenol A, nor-isoprenóide inédito, hidroxipinoresinol, lariciresinol, plumieride e inositol, frente aos fungos: Alternaria alternata, Aspergillus fumigatus, A. niger, Candida albicans, Cladosporium cladosporioides, Fusarium oxysporium, Penicillium oxalicum, P. funicullosum e Rhizopus orizae. e frente às bactérias: Bacillus subtilis, Escherichia coli, Micrococcus luteus, Salmonella typhimurim, Staphilococcus aureus e Streptococcus mutans. Foram observadas atividades bactericida para as lignanas: isolariciresinol frente à bactéria S. mutans e lariciresinol frente à bactéria S. aureus. Os compostos isolados de H. obovatus permitiram comparar filogeneticamente este gênero aos gêneros Tabernaemontana e Rauvolfia (pertencentes às mesmas família e sub-família), estudados anteriormente em nosso grupo de pesquisas e ricos em alcalóides indólicos.
Abstract: Our objective is the isolation and identification of the compounds from Himatanthus obovatus (family Apocynaceae and sub-family Rauvolfioideae). Five species from genus Himatanthus have been chemically studied. H. obovatus was collected in Chapada dos Guimarães (MT state, Brazil) and in Casa Branca (SP State, Brazil). We used different methodologies for extraction and purification of the extracts, yielding 5 lignans: pinoresinol, isolariciresinol, hydroxypinoresinol, lariciresinol and olivil; 3 nor-isoprenoids: blumenol C, blumenol A and one unknown nor-isoprenoid; the iridoid plumieride, a mixture of terpenes: lupeol acetate + a-amirin acetate + b-amirin acetate + germanicol and stigmasterol + b-sitosterol + campesterol and, after acetylation of the crude ethanolic extract, the glycitol inositol. The diclorometanic (CDCb) and ethanolic (CECb) extracts trom the bark of H. obovatus (Casa Branca - SP) have been tested with Artemia salina Leach. and for antiproliferative activity against 4 carcinoma cell lines derived from human cancer: leukemia (K562), lung (NCI1460), melanoma (UACC62) and breast (MCF7). The good results with the CDCb extract in both tests suggest that this extract is a development candidate. The Bioautography tests were made with the heptanic (CHCb), diclorometanic (CDCb) and ethanolic (CECb) extracts from the bark of H. obovatus (Casa Branca - SP) and with the isolated substances: pinoresinol, isolariciresinel, blumenol C, blumenol A, the unknown nor-isoprenoid, hydroxypinoresinol, lariciresinol, plumieride and inositol against the fungi: Alternaria alternata, Aspergillus fumigatus, A. niger, Candida albicans, Cladosporium cladosporioides, Fusarium oxysporium, Penicillium oxalicum P. funicullosum and Rhizopus orizae and against the bacteria: Bacillus subtilis, Escherichia coli, Micrococcus luteus, Salmonella typhimurim, Staphilococcus aureus and Streptococcus mutans. We observed bactericide activity at the lignans: isolariciresinol against the bacteria S. mutans and lariciresinol against the bacteria S. aureus. The coumpounds isolated from H. obovatus allowed us to phylogenetically compare this genus to the genera Tabernaemontana and Rauvolfia (belonging to the same family and sub-family), previously studied in our group and rich in indolic alkaloids.
Doutorado
Quimica Organica
Doutor em Ciências
Perez, Gil Jordi. "Biosíntesi d’isoprenoides en bacteris i plantes. Aproximacions biotecnològiques". Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/101464.
Texto completoISOPRENOIDS BIOSYNTHESIS IN BACTERIA AND PLANTS Isoprenoids are a vast family of natural compounds that perform a wide variety of biological functions, many of which are essential. However, they all derived from the universal intermediates IPP and its isomer DMAPP. Their biosynthesis occurs through two possible biosynthetic routes, the MEP and the MVA pathways. The MEP pathway is the exclusive source of IPP and DMAPP in eubacteria whereas the MVA pathway provides these precursors in archaea, fungi and animals. In plants, both pathways coexist in different subcelullar compartments. This distribution of isoprenoid biosynthetic pathways among the kingdoms has turned the MEP pathway into a promising new target for the design of new antibiotics (with FSM, a specific inhibitor of the enzyme DXR, as the main representative). Although isoprenoids are essential in all free-living organisms, tremendous plasticity among bacteria has led to the evolution of alternative biochemical strategies to produce these universal precursors. Carotenoids comprise a subfamily of C40 isoprenoid end products derived from a molecule of phytoene with functions in both primary and secondary metabolism. These are synthesized primarily in the plastids of plants but are also produced by some photosynthetic bacteria, fungi, and rarely in insects. The increasing use of carotenoids in the food, cosmetics and pharmaceutical industries as pigments, fragrances and nutraceuticals has galvanized their production through biotechnological applications. We have combined the study of basic and applied aspects of isoprenoid biosynthesis focusing on the role of the MEP pathway and carotenoid biosynthesis to suggest and evaluate strategies for improving their production in bacteria and plants. To this end, we have exploited the metabolic plasticity of bacteria to provide new biotechnological tools for carotenoid production. In the study, the use of bifunctional enzymes was tested to simultaneously improve two catalytic steps. As a proof of concept we analyzed the effect of chimeric LCYE-LCYB (ε-cyclase and β-cyclase, respectively) in a carotenogenic E. coli model system or in transgenic plants of Arabidopsis thaliana. The difference in the results highlights the major complexity of plant systems. In this direction, we studied the possible role of additional post-transcriptional regulation controlling the flow of the MEP pathway by using a mutant (rif18) isolated from a FSM-resistance screening. The study showed a higher level of regulation as a consequence of the integration and coordination with other metabolic pathways of the plant, especially the metabolism of sugars and hormones. We also evaluated the role of each of the individual enzymes of the MEP pathway in controlling the pathway flux in bacterial systems. Overexpresion of each individual gene in a carotenogenic E. coli model system highlighted the key role of DXS and to a lesser extent of the participation for DXR and HDR in driving flux through this pathway, in agreement with previous reports for Arabidopsis. Even more importantly, these results demonstrate that adjusted levels of overexpresion of the key enzymes produce better results in the accumulation of end products, the most relevant parameter for evaluating biotechnological strategies. Additionally, we further studied the role of HDS both in bacteria and plants. This enzyme had been previously postulated to have different regulatory roles in the two systems based on protein alignments. In both cases, an increase in enzyme activity does not affect the accumulation of end products. The identified key steps in the MEP pathway (DXS and DXR) were chosen as targets to search for new alternative activities taking advantage of the genetic and metabolic plasticity of bacteria. Two E.coli proteins which underwent change-of-function mutations in dxs or dxr deficient strains and acquired DXS activity were identified (DHBPS and PDH-E1). An alternative activity to DXR was identified by analyzing the sequenced genomes available from bacteria. A small group of microorganism contains homologous genes for all MEP pathway but DXR. Using the genome of Brucella abortus, a separate protein with no apparent homology to DXR (thereafter named DXR-like, or DRL) was identified. DRL defines a new family of proteins that catalyzes the first committed step of the MEP pathway. Characterization of the protein showed that it catalyzes the same reaction with similar kinetic properties as DXR albeit with significant differences in catalytic efficiency and lower sensitivity to inhibition by FSM. Phylogenetic and complementation studies of the family revealed the existence of true DRL (with DXR activity) grouped in the same phylogenetic clade. Crystallization and structural resolution of DRL from Brucella abortus allowed a comparative study. Significant differences to DXR were observed, in particular in the arrangement of the active site. Based on those differences and in silico modeling, the possibility to selectively inhibit either enzyme was hypothesized. In vitro inhibition studies using purified recombinant E. coli DXR and B.abortus DRL demonstrates that α-phenyl derivatives of FSM inhibit DXR in the nanomolar range while show no significant effect on DRL at a concentrations up to 1 mM. Those results open the door for the design of new highly specific antibiotics. The first tests in biotechnological applications comparing the ability of the three alternative proteins to replace the original DXS or DXR activities showed no improvement in performance. However, these proteins should be considered starting materials to continue the optimization of the new catalytic functions acquired using directed enzyme evolution methods in the laboratory.
Milne, Keith Livingston. "Bacterial isoprenoid biosynthesis". Thesis, University of Edinburgh, 1990. http://hdl.handle.net/1842/11172.
Texto completoNg, Khuen Yen Prince of Wales Medical Research Institute Faculty of Medicine UNSW. "Isoprenoids in Parkinson's disease". Awarded by:University of New South Wales. Prince of Wales Medical Research Institute, 2009. http://handle.unsw.edu.au/1959.4/44827.
Texto completoAmslinger, Sabine. "Chemie und Immunbiologie von Intermediaten der Isoprenoidbiosynthese". [S.l. : s.n.], 2003. http://deposit.ddb.de/cgi-bin/dokserv?idn=969451997.
Texto completoWarzecha, Klaus-D. "Lichtinduzierter Elektronentransfer an isoprenoiden Polyalken-1, 1-Dicarbonitrilen zum Mechanismus photochemisch ausgelöster radikalischer Cyclisierungen /". [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966137434.
Texto completoFoster, Jeremy Michael. "Hormones and isoprenoids in trematodes". Thesis, University of Liverpool, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303679.
Texto completoDuvold, Tore. "Chemistry and biochemistry of bacterial isoprenoids". Université Louis Pasteur (Strasbourg) (1971-2008), 1997. http://www.theses.fr/1997STR13195.
Texto completoGrove, Joanna E. "Inhibition of isoprenoid biosynthesis by bisphosphonates". Thesis, University of Sheffield, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.301811.
Texto completoLibros sobre el tema "Isoprenoidi"
Rodríguez-Concepción, Manuel, ed. Plant Isoprenoids. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0606-2.
Texto completoSchrader, Jens y Jörg Bohlmann, eds. Biotechnology of Isoprenoids. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20107-8.
Texto completoH, Law John y Rilling Hans C, eds. Steroids ans isoprenoids. Orlando: Academic Press, 1985.
Buscar texto completoH, Law John y Rilling Hans C, eds. Steroids and isoprenoids. Orlando: Academic Press, 1985.
Buscar texto completoBach, Thomas J. y Michel Rohmer, eds. Isoprenoid Synthesis in Plants and Microorganisms. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-4063-5.
Texto completoDavid, Nes W., Parish Edward J, Trzaskos James M, American Chemical Society. Division of Agricultural and Food Chemistry. y American Chemical Society Meeting, eds. Regulation of isopentenoid metabolism. Washington, DC: American Chemical Society, 1992.
Buscar texto completoFrenkel, Joost y Hans R. Waterham. Mevalonate Kinase Deficiency. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199972135.003.0039.
Texto completoSchrader, Jens y Jörg Bohlmann. Biotechnology of Isoprenoids. Springer, 2016.
Buscar texto completoSchrader, Jens y Jörg Bohlmann. Biotechnology of Isoprenoids. Springer London, Limited, 2015.
Buscar texto completoSchrader, Jens y Jörg Bohlmann. Biotechnology of Isoprenoids. Springer, 2015.
Buscar texto completoCapítulos de libros sobre el tema "Isoprenoidi"
Schwarzbauer, Jan y Branimir Jovančićević. "Isoprenoids". En From Biomolecules to Chemofossils, 27–76. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-25075-5_3.
Texto completoEigenbrode, Jennifer. "Isoprenoids". En Encyclopedia of Astrobiology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27833-4_823-3.
Texto completoEigenbrode, Jennifer. "Isoprenoids". En Encyclopedia of Astrobiology, 1274–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-44185-5_823.
Texto completoHänsel, Rudolf y Josef Hölzl. "Isoprenoide". En Lehrbuch der pharmazeutischen Biologie, 63–125. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-60958-9_3.
Texto completoEigenbrode, Jennifer. "Isoprenoids". En Encyclopedia of Astrobiology, 859–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11274-4_823.
Texto completoKatzin, Alejandro Miguel. "Isoprenoid Metabolism". En Encyclopedia of Malaria, 1–8. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8757-9_11-1.
Texto completoNguyen, Uyen T. T., Andrew Goodall, Kirill Alexandrov y Daniel Abankwa. "Isoprenoid Modifications". En Post-Translational Modifications in Health and Disease, 1–37. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-6382-6_1.
Texto completoSandmann, Gerhard. "Carotenoids of Biotechnological Importance". En Biotechnology of Isoprenoids, 449–67. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/10_2014_277.
Texto completoWüst, Matthias. "Advances in the Analysis of Volatile Isoprenoid Metabolites". En Biotechnology of Isoprenoids, 201–13. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/10_2014_278.
Texto completoLeonhardt, Robin-Hagen y Ralf G. Berger. "Nootkatone". En Biotechnology of Isoprenoids, 391–404. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/10_2014_279.
Texto completoActas de conferencias sobre el tema "Isoprenoidi"
Vasilev, Dimitar y Ludger A. Wessjohann. "Synthesis of isoprenoid diphosphate mimetics". En 14th Brazilian Meeting on Organic Synthesis. São Paulo: Editora Edgard Blücher, 2013. http://dx.doi.org/10.5151/chempro-14bmos-r0387-1.
Texto completoBieleń, W. y I. Matyasik. "Aryl Isoprenoids as Indicators of Photic Zone Anoxia". En 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201902983.
Texto completoTabefam, M., M. Moridi Farimani, J. Ramseyer, O. Potterat y M. Hamburger. "New isoprenoids with rare scaffolds from Salvia hydrangea". En GA 2017 – Book of Abstracts. Georg Thieme Verlag KG, 2017. http://dx.doi.org/10.1055/s-0037-1608274.
Texto completoFadeeva, S., I. Goncharov, A. Litvinova, N. Oblasov, M. Veklich, V. Samoilenko y A. Zherdeva. "Aryl Isoprenoids of Paleozoic Oils of Southeastern Western Siberia (Russia)". En 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134121.
Texto completoÖztoprak, M. "Investigating the Intramolecular Isotopic Structure of Isoprenoids Using Orbitrap Mass Spectrometry". En 30th International Meeting on Organic Geochemistry (IMOG 2021). European Association of Geoscientists & Engineers, 2021. http://dx.doi.org/10.3997/2214-4609.202134246.
Texto completoLipko, Agata, Adam Jozwiak, Magdalena Kania, Witold Danikiewicz, Marta Hoffman-Sommer, Liliana Surmacz, Michel Rohmer, Jaroslaw Poznanski y Ewa Swiezewska. "Biochemical tools to monitor isoprenoid biosynthesis – the case of polyprenol and dolichol". En New frontiers in natural product chemistry, scientific seminar with international participation. Institute of Chemistry, 2021. http://dx.doi.org/10.19261/nfnpc.2021.ab04.
Texto completoDickerson, Lindsy, Aditi Jain, Pamela L. Crowell, James C. K. Lai y Alok Bhushan. "Abstract 1930: Inhibition of glioblastoma cell growth with the isoprenoids perillyl alcohol, farnesol, and geraniol". En Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-1930.
Texto completoCorcoran, Megan, Aaron Diefendorf, Thomas Lowell, Nicholas Wiesenberg, Gregory Wiles, Mark A. Wilson, Watts Dietrich y Justine Paul Berina. "SEASONALITY OF HYDROGEN ISOTOPES AND CONCENTRATIONS OF HIGHLY BRANCHED ISOPRENOIDS (HBIS) PRODUCED BY LAKE DIATOMS". En Joint 56th Annual North-Central/ 71st Annual Southeastern Section Meeting - 2022. Geological Society of America, 2022. http://dx.doi.org/10.1130/abs/2022nc-374532.
Texto completoGies, H., D. Montlucon, N. Haghipour, M. Lupker, T. S. van der Voort, F. Hagedorn y T. I. Eglinton. "Radiocarbon Analysis of Isoprenoid and Branched Glycerol Dialkyl Glycerol Tetraethers in Soils and Fluvial Sediments". En 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, 2019. http://dx.doi.org/10.3997/2214-4609.201903045.
Texto completoReilly, Jacqueline E., Jeffrey D. Neighbors, Nadine Bannick, Michael D. Henry, Craig H. Kuder y Raymond J. Hohl. "Abstract 4032: Targeting the isoprenoid biosynthetic pathway in a murine model of metastatic prostate cancer". En Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-4032.
Texto completoInformes sobre el tema "Isoprenoidi"
Ginzberg, Idit, Richard E. Veilleux y James G. Tokuhisa. Identification and Allelic Variation of Genes Involved in the Potato Glycoalkaloid Biosynthetic Pathway. United States Department of Agriculture, agosto de 2012. http://dx.doi.org/10.32747/2012.7593386.bard.
Texto completoYalovsky, Shaul y Julian Schroeder. The function of protein farnesylation in early events of ABA signal transduction in stomatal guard cells of Arabidopsis. United States Department of Agriculture, enero de 2002. http://dx.doi.org/10.32747/2002.7695873.bard.
Texto completoTotal organic carbon, extractable organic matter, rock-eval parameters, isoprenoid ratios, carbon preference index, and isotopic data from cuttings of the AMOCO Cathedral River #1 well. Alaska Division of Geological & Geophysical Surveys, 1986. http://dx.doi.org/10.14509/19199.
Texto completo