Literatura académica sobre el tema "Ionic liquid (IL)"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Ionic liquid (IL)".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Ionic liquid (IL)":

1

Avilés, María-Dolores, Ramón Pamies, José Sanes, Francisco-José Carrión y María-Dolores Bermúdez. "Fatty Acid-Derived Ionic Liquid Lubricant. Protic Ionic Liquid Crystals as Protic Ionic Liquid Additives". Coatings 9, n.º 11 (31 de octubre de 2019): 710. http://dx.doi.org/10.3390/coatings9110710.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Fatty acids are natural products which have been studied as green lubricants. Ionic liquids are considered efficient friction reducing and wear preventing lubricants and lubricant additives. Fatty acid-derived ionic liquids have shown potential as neat lubricant and additives. Protic ionic liquid crystals (PILCs) are protic ionic liquids (PILs) where cations and anions form ordered mesophases that show liquid crystalline behavior. The adsorption of carboxylate units on sliding surfaces can enhance the lubricant performance. Ionic liquid crystal lubricants with longer alkyl chains can separate sliding surfaces more efficiently. However, they are usually solid at room temperature and, when used as additives in water, transitions to high friction coefficients and wear rates, with tribocorrosion processes occur when water evaporation takes place at the interface. In order to avoid these inconveniences, in the present work, a protic ammonium palmitate (DPA) ionic liquid crystal has been added in 1 wt.% proportion to a short chain citrate ionic liquid (DCi) with the same protic ammonium cation. A spin coated layer of (DCi + DPA) was deposited on AISI316L steel surface before the sliding test against sapphire ball. Synergy between DCi PIL and DPA PILC additive reduces friction coefficient and wear rate, without tribocorrosion processes, as shown by scanning electron microscopy (SEM)/energy dispersive X-ray microanalysis (EDX) and X-ray photoelectron spectroscopy (XPS) results.
2

Zhao, Ru-Song, Xia Wang, Fu-Wei Li, Shan-Shan Wang, Li-Li Zhang y Chuan-Ge Cheng. "Ionic liquid/ionic liquid dispersive liquid-liquid microextraction". Journal of Separation Science 34, n.º 7 (25 de febrero de 2011): 830–36. http://dx.doi.org/10.1002/jssc.201000802.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kunz, Werner, Eva Maurer, Regina Klein, Didier Touraud, Doris Rengstl, Agnes Harrar, Susanne Dengler y Oliver Zech. "Low Toxic Ionic Liquids, Liquid Catanionics, and Ionic Liquid Microemulsions". Journal of Dispersion Science and Technology 32, n.º 12 (diciembre de 2011): 1694–99. http://dx.doi.org/10.1080/01932691.2011.616109.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Aslanov, L. A. "Ionic liquids: Liquid structure". Journal of Molecular Liquids 162, n.º 3 (agosto de 2011): 101–4. http://dx.doi.org/10.1016/j.molliq.2011.06.006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bowlas, Christopher J., Duncan W. Bruce y Kenneth R. Seddon. "Liquid-crystalline ionic liquids". Chemical Communications, n.º 14 (1996): 1625. http://dx.doi.org/10.1039/cc9960001625.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Texter, John. "Liquid Polymerized Ionic Liquids". ECS Meeting Abstracts MA2022-02, n.º 55 (9 de octubre de 2022): 2089. http://dx.doi.org/10.1149/ma2022-02552089mtgabs.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Polymerized ionic liquids (PIL) are being used in many advanced materials applications. An interesting subclass of PILs is composed of liquid PIL, LPIL. Such materials exhibit classical liquid properties and offer insight into the physics and physical chemistry of liquids and particles. We present an overview of LPIL and a classification scheme to usefully compartmentalize such materials for further design, optimization, and application. Several members of this class of LPIL are described in detail along with multiple applications. One member consists of organosiloxanes condensed on themselves to produce a novel type of solvent-free nanofluid. These materials are the first to experimentally illustrate polydispersity frustration of crystallization and to show that both freezing and glass transitions are lambda transitions. Another member comprises a functional core decorated with ionic liquid salts. Such materials can be used to mitigate embrittlement accompanying using nanofillers and to incorporate such nanofluids in diverse new materials and functional coatings. Linear LPIL offer similar advantages to those provided by molecular IL and promise to overcome leaching limitations in liquid supported membranes and polyeletrolyte membranes in batteries and fuel cells. Lastly, extension of PILs to polyurethanes and polyureas (PUs) and to polyesters (PEs) has resulted in the first known self-dispersing polyurethane and polyester dispersions (PUDs and PEDs, respectively). Several of their applications in stimuli responsive coatings and graphene dispersions are illustrated.
7

Guo, Li Ying, Jun Shi, Jun Hai He, Ji Yue Huang y Peng Cheng Huang. "Synthesis and Characterization of Supported on Silica Based Ionic Liquids". Applied Mechanics and Materials 727-728 (enero de 2015): 34–37. http://dx.doi.org/10.4028/www.scientific.net/amm.727-728.34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Three kinds of functionalized imidazolium ionic liquid, 1-chloride (2-hydroxyethyl) -3-methyl imidazole ionic liquid [HeMIM]Cl, 1-bromide ethylamine-3-methyl imidazolium ionic liquid [AeMIM]Br and chlorinated 1-carboxyethyl-3-methyl imidazolium ionic liquid [CeMIM]Cl, were synthesized firstly. Subsequently, three kinds of supported silicon imidazolium ionic liquids were prepared from above ionic liquids with tetraethoxysilane by sol-gel method. The Chemical structure and crystal structure of the supported on silica based ionic liquids were analyzed by FTIR and XRD.
8

Boudesocque, Stéphanie, Aminou Mohamadou y Laurent Dupont. "Efficient extraction of gold from water by liquid–liquid extraction or precipitation using hydrophobic ionic liquids". New J. Chem. 38, n.º 11 (2014): 5573–81. http://dx.doi.org/10.1039/c4nj01115e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Tetrahalogenoaurate anions have been successfully removed from water using betaine derivative cationic ionic liquids, by precipitation using hydrophilic ionic liquids or by liquid–liquid extraction with hydrophobic ionic liquids.
9

Ebrahimi, Mohammad, Kateryna Fatyeyeva y Wojciech Kujawski. "Different Approaches for the Preparation of Composite Ionic Liquid-Based Membranes for Proton Exchange Membrane Fuel Cell Applications—Recent Advancements". Membranes 13, n.º 6 (11 de junio de 2023): 593. http://dx.doi.org/10.3390/membranes13060593.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
The use of ionic liquid-based membranes as polymer electrolyte membranes for fuel cell applications increases significantly due to the major features of ionic liquids (i.e., high thermal stability and ion conductivity, non-volatility, and non-flammability). In general, there are three major methods to introduce ionic liquids into the polymer membrane, such as incorporating ionic liquid into a polymer solution, impregnating the polymer with ionic liquid, and cross-linking. The incorporation of ionic liquids into a polymer solution is the most common method, owing to easy operation of process and quick membrane formation. However, the prepared composite membranes suffer from a reduction in mechanical stability and ionic liquid leakage. While mechanical stability may be enhanced by the membrane’s impregnation with ionic liquid, ionic liquid leaching is still the main drawback of this method. The presence of covalent bonds between ionic liquids and polymer chains during the cross-linking reaction can decrease the ionic liquid release. Cross-linked membranes reveal more stable proton conductivity, although a decrease in ionic mobility can be noticed. In the present work, the main approaches for ionic liquid introduction into the polymer film are presented in detail, and the recently obtained results (2019–2023) are discussed in correlation with the composite membrane structure. In addition, some promising new methods (i.e., layer-by-layer self-assembly, vacuum-assisted flocculation, spin coating, and freeze drying) are described.
10

Li, Jianshen, Jianling Zhang, Buxing Han, Li Peng y Guanying Yang. "Ionic liquid-in-ionic liquid nanoemulsions". Chemical Communications 48, n.º 85 (2012): 10562. http://dx.doi.org/10.1039/c2cc36089f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Ionic liquid (IL)":

1

Bara, Jason Edward. "New ionic liquids and ionic liquid-based polymers and liquid crystals for gas separations". Connect to online resource, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3256439.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Coles, Samuel. "Interfacial nanostructure of solvate ionic liquids and ionic liquid solutions". Thesis, University of Oxford, 2018. https://ora.ox.ac.uk/objects/uuid:89c797e4-e000-4c8c-b6b8-ffa5ed202a4d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
The technology employed by human beings for the generation, storage and usage of energy is presently undergoing the fastest and most profound change since the industrial revolution. The changes in the generation and usage of energy necessitate the development of new methods of energy storage. In these systems, electrochemical energy storage will play a crucial role and to this end new electrolytes need to be explored to complement these changes. One such class of liquids is ionic liquids, a class of salts that are molten at room temperature. These liquids have a broad applicability to batteries and supercapacitors. This thesis details work where molecular dynamics simulations have been used to explore the nanostructure of ionic liquids and their mixtures with various molecular solvents at simplistic electrodes. The thesis has two broad sections. The first is covered in Chapter 3, and explores the nanostructure of ionic liquid propylene carbonate solutions, developing a framework through which these nanostructures can be understood. The section concludes that the increasing dilution of ionic liquids decreases the surface charge at which the characteristic ionic liquid oscillatory interfacial structure gives way to a different structure featuring monotonic charge decay. The behaviour of ionic liquids at interfaces is found to be correlated to ion size and type, as well as concentration. A wide divergence in the observed behaviour is shown at positive and negative electrodes due to the asymmetry of propylene carbonate. The second section, consisting of two chapters, explores the interfacial nanostructure of solvate ionic liquids using two different boundary conditions to model the electrode. This work is the first simulation of solvate ionic liquids at electrified interfaces. This section will explore the effect of electrode model on the behaviour of these ionic liquids at the electrode. Chapter 4 uses a fixed charge electrode, whereas Chapter 5 uses one with a fixed potential. The section concludes that regardless of electrode model, the idealised portrait of a solvate ionic liquid - one where the liquid behaves exactly as an aprotic ionic liquid - is not applicable. In Chapter 4's exploration of fixed charged electrodes, the formation of 2 glyme to lithium complexes contradicts the idealised portrait of the liquid. A different change is observed in Chapter 5's exploration of fixed potential electrodes, with both lithium glyme and lithium anion clusters forming at the interface. The key difference between the two studies is that lithium does not coordinate to the electrode in the fixed charge simulations, while in the fixed potential case it does. At the end of Chapter 5 the results are compared against experimental data, with the efficacy of the two models discussed. The aim of both studies is to look at the nanostructure of ionic liquids, when the symmetry between co-ion and cation repulsion - and related effects - is broken by the presence of a non ionic constituent in the liquid.
3

LATINI, GIULIO. "Bio-based ionic liquids and poly(ionic liquid)s for CO2 capture". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2912980.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Zgonnik, Viacheslav. "Elle & il : enantioselective liquid-liquid extraction and ionic liquids". Toulouse 3, 2011. http://thesesups.ups-tlse.fr/1297/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
L'extraction liquide-liquide énantiosélective (ELLE) consiste en l'extraction d'un énantiomère à partir d'un mélange racémique par transfert entre deux phases liquides. Cette technologie est très prometteuse pour l'obtention des composés énantiopurs et devient l'objet d'une forte attention les dernières années grâce au développement de l'équipement approprié qui permet de réduire le temps et le prix de la séparation des énantiomères. L'objectif essentiel pour l'introduction d'ELLE dans le monde industriel est la découverte d'hôtes chiraux fiables, peu chers, durables, sélectifs et applicables à une large gamme de substances chirales. Dans ce travail, la possibilité d'effectuer l'ELLE dans un milieu ionique chiral a été vérifiée. De nombreux nouveaux liquides ioniques chiraux ont été préparés pour jouer le rôle des hôtes chiraux. Le meilleur exemple montre un excès énantiomérique de 30% et une sélectivité opérationnelle de 1,97. Ceci représente le premier exemple d'ELLE utilisant les liquides ioniques chiraux et sans usage d'ions métalliques
Enantioselective liquid-liquid extraction (ELLE) is an implementation of the extraction of one enantiomer from a racemic mixture by the transfer between two liquid phases. This technology is very promising for obtaining enantiopure compounds and becomes the object of much attention in recent years after the development of appropriate equipment that reduces the time and cost of the separation of enantiomers. The major objective for the successful introduction of ELLE to industrial world is the discovery of reliable, inexpensive and durable chiral hosts selective for a wide range of chiral substances. In this work the possibility of performing ELLE in chiral ionic liquids environment was verified. Many new chiral ionic liquids were prepared to play the role of chiral hosts. The best example shows enantiomeric excess of 30% and operational selectivity of 1. 97. This represents the first example of using chiral ionic liquids in ELLE and without metallic ions
5

Abai, M. "Ionic liquids for mercury removal from liquid hydrocarbons". Thesis, Queen's University Belfast, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.545997.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sheppard, O. "Structural and liquid crystalline properties of ionic liquids". Thesis, Queen's University Belfast, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431482.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ashworth, Claire. "A computational investigation of local interactions within ionic liquids and ionic liquid analogues". Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/58256.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
The potential applications of ionic liquids and related analogues are diverse. However, for large-scale industrial applications low cost ionic liquids are required. Moreover, for the full potential of ionic liquids to be realised, a fundamental link between molecular level interactions, structuring and the bulk phase properties must be established. Deep eutectic solvents (DESs) and protic ionic liquids have been identified as candidates for the potential application of chalcopyrite leaching. The choline chloride – urea DES and 1- butylimidazolium hydrogensulphate protic ionic liquid were selected as systems of primary interest. Local structuring within the selected systems has been investigated, with an emphasis on the hydrogen bonding interactions. The choline chloride – urea mixture is a prototypical example of a DES. Using DFT, the pairwise interactions between the constituent components, and within clusters composed of n.urea.choline-chloride (n = 1-3), have been evaluated. Many different types of hydrogen bond have been identified, exhibiting flexibility in both strength and number. The formation of the commonly proposed [2urea⋅Cl]– complexed anion has been scrutinised and found to be energetically competitive with other interactions. Moreover, contrary to existing proposals, the negative charge is found to remain localised on chloride. The cation-anion and anion-anion interactions within [C4Him][HSO4] and related systems have been compared and contrasted;; ion pairs were evaluated using DFT and the bulk systems modelled using classical MD. Local structuring within [C4Him][HSO4] exhibits features of both the aprotic analogue and alkylammonium protic ionic liquids. [HSO4]–⋅⋅⋅[HSO4]– interactions have been considered and found to be a notable feature of the [HSO4]– ionic liquids studied. It is anticipated that the formation of [HSO4]– aggregates influences the properties of the bulk systems. A QM/MM method for the study of ionic liquids is introduced. Preliminary analysis suggests that this is a viable approach for the investigation of local structuring within ionic liquids.
8

Hall, L. S. I. "Supported ionic liquid catalysis". Thesis, Queen's University Belfast, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.676492.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Over the last few years interest in supported ionic liquid (IL) catalysis has been growing. This is due to the increased selectivity and catalytic activity obtained in IL based systems compared with molecular solvents coupled with the advantages of solid catalyst in terms of separation. In this thesis, the effect of supported ionic liquid catalysis will be examined for various different reactions including the hydrogenation of citral and cinnamaldehyde, the Diels-Alder, Mukaiyama aldol and carbonyl-ene reactions. Solid catalyst ionic liquid layers (SCILL) catalysts and Ionic polymers (IP) were used for the hydrogenation of citral and cinnamaldehyde. Overall a Pd/Ab03 with and without an IL produced significantly higher selectivities and conversions compared with a Pd/C catalyst. The IP catalysts were shown to greatly increase the selectivity. The IP synthesised from the commercial Amberlite 910, produced the best results for both substrates achieving high selectivities up to 99%.
9

Yang, Junhong. "GLASS FORMATION BEHAVIOR AND IONIC CONDUCTIVITY OF IONIC LIQUIDS AND POLYMERIC IONIC LIQUID: INSIGHT FROM MOLECULAR SIMULATION". University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1494886213137829.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bernhem, Kristoffer. "How ionic are ionic liquids?" Thesis, KTH, Skolan för kemivetenskap (CHE), 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-41033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Ionic liquids are continuously finding more and more applications, both in research and in the industry. Many attempts have been made to find parameters that could be used to describe all ionic liquid systems. Five years ago a Japanese group applied the work of Gutmann on ionic liquids to use ionic association to describe solvation effects. The group calculated ionic association from conductivity and diffusion measurements. This report presents a direct approach through electrophoretic NMR to measure ionic association in ionic liquids.  The report contains a brief introduction to ionic liquids and their properties as well as a short explanation of Nuclear Magnetic Resonance (NMR) spectroscopy, diffusion NMR and a more detailed explanation of electrophoretic NMR (eNMR). Experimental setups, taken from previous work by the NMR group at Physical Chemistry KTH, have been modified to allow for measurements in ionic liquid systems. The report discusses the issues that can arise when measuring eNMR in ionic liquids and suggests solutions. The method developed is principally built upon experiments on 1-butyl-3-methyl-imidazolium trifluoroacetate and is directly applicable to other ionic liquid systems. For more viscous systems than the one investigated here, slight changes will need to be made, as explained in the report.  In order to evaluate the method developed during the project the degree of association for 1-butyl-3-methyl-imidazolium trifluoroacetate has been calculated from experimental results and results in similar values as reported by Tokuda et al.. Furthermore, the temperature variation due to Joule heating during a complete eNMR experiment was also investigated by observing change in chemical shift.

Libros sobre el tema "Ionic liquid (IL)":

1

Eftekhari, Ali, ed. Ionic Liquid Devices. Cambridge: Royal Society of Chemistry, 2017. http://dx.doi.org/10.1039/9781788011839.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Marcus, Yizhak. Ionic Liquid Properties. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30313-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Paul, Bidyut K. y Satya P. Moulik, eds. Ionic Liquid-Based Surfactant Science. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118854501.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Zhang, Suojiang, Qing Zhou, Xingmei Lu, Yuting Song y Xinxin Wang, eds. Physicochemical Properties of Ionic Liquid Mixtures. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-7573-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Freire, Mara G., ed. Ionic-Liquid-Based Aqueous Biphasic Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-52875-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Cremer, Till. Ionic Liquid Bulk and Interface Properties. Heidelberg: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00380-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Malhotra, Sanjay V. Ionic liquid applications: Pharmaceuticals, therapeutics, and biotechnology. Editado por American Chemical Society. Division of Organic Chemistry. Washington, DC: American Chemical Society, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Malhotra, Sanjay V. Ionic liquid applications: Pharmaceuticals, therapeutics, and biotechnology. Editado por American Chemical Society. Division of Organic Chemistry. Washington, DC: American Chemical Society, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Malhotra, Sanjay V., ed. Ionic Liquid Applications: Pharmaceuticals, Therapeutics, and Biotechnology. Washington, DC: American Chemical Society, 2010. http://dx.doi.org/10.1021/bk-2010-1038.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Habasaki, Junko, Carlos Leon y K. L. Ngai. Dynamics of Glassy, Crystalline and Liquid Ionic Conductors. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-42391-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Ionic liquid (IL)":

1

Kato, Takashi y Masafumi Yoshio. "Liquid Crystalline Ionic Liquids". En Electrochemical Aspects of Ionic Liquids, 375–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118003350.ch26.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kato, Takashi y Masafumi Yoshio. "Liquid Crystalline Ionic Liquids". En Electrochemical Aspects of Ionic Liquids, 307–20. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2005. http://dx.doi.org/10.1002/0471762512.ch25.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Gerhard, Dirk, Friedrich Fick y Peter Wasserscheid. "Ionic Liquid-Ionic Liquid Biphasic Systems". En Molten Salts and Ionic Liquids, 143–50. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9780470947777.ch11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Grenoble, Zlata y Steven Baldelli. "Ionic Liquids at the Gas-Liquid and Solid-Liquid Interface - Characterization and Properties". En Supported Ionic Liquids, 145–76. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527654789.ch7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bülow, Mark, Andreas Danzer y Christoph Held. "Liquid-Liquid Equilibria of Binary and Ternary Systems Containing Ionic Liquids". En Encyclopedia of Ionic Liquids, 1–7. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-6739-6_108-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Bülow, Mark, Andreas Danzer y Christoph Held. "Liquid-Liquid Equilibria of Binary and Ternary Systems Containing Ionic Liquids". En Encyclopedia of Ionic Liquids, 821–27. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-33-4221-7_108.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Sarmad, S. y J. Mikkola. "Vapor-Liquid Equilibrium of Ionic Liquids". En Encyclopedia of Ionic Liquids, 1–22. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-10-6739-6_107-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Sarmad, S. y Jyri-Pekka Mikkola. "Vapor-Liquid Equilibrium of Ionic Liquids". En Encyclopedia of Ionic Liquids, 1331–51. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-33-4221-7_107.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Tsaoulidis, Dimitrios A. "Liquid-Liquid Mass Transfer Using Ionic Liquids". En Studies of Intensified Small-scale Processes for Liquid-Liquid Separations in Spent Nuclear Fuel Reprocessing, 109–29. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22587-6_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Minami, Ichiro. "Ionic Liquid Lubricants". En Encyclopedia of Tribology, 1866. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-0-387-92897-5_955.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Ionic liquid (IL)":

1

Yoshino, K., R. Ozaki y H. Moritake. "Properties of liquids, liquid crystals, ionic liquids and ionic liquid crystals in thin cells studied using shear horizontal wave propagation". En 2008 IEEE International Conference on Dielectric Liquids (ICDL 2008). IEEE, 2008. http://dx.doi.org/10.1109/icdl.2008.4622458.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

De Ley, E., Arnount De Meyere, B. Maximus, J. P. Vetter y Herman Pauwels. "Ionic effects in LCDs". En Liquid and Solid State Crystals: Physics, Technology, and Applications, editado por Jozef Zmija. SPIE, 1993. http://dx.doi.org/10.1117/12.156958.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Davidson, Jacob D. y N. C. Goulbourne. "Ion transport in ionic liquid-swollen ionic polymer transducers". En SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, editado por Zoubeida Ounaies y Jiangyu Li. SPIE, 2009. http://dx.doi.org/10.1117/12.816080.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Binh-Khiem, Nguyen, Kiyoshi Matsumoto y Isao Shimoyama. "Reflective Display using Ionic Liquid". En 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2009. http://dx.doi.org/10.1109/memsys.2009.4805345.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Davidson, Jacob D. y N. C. Goulbourne. "Actuation and Charging Characteristics of Ionic Liquid-Ionic Polymer Transducers". En ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. ASMEDC, 2010. http://dx.doi.org/10.1115/smasis2010-3892.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Resumen
Ionic polymer transducers (IPTs) are soft sensors and actuators which operate through a coupling of micro-scale chemical, electrical, and mechanical interactions. The use of an ionic liquid as solvent for an IPT has been shown to dramatically increase transducer lifetime in free-air use, while also allowing for higher applied voltages without electrolysis. In this work we model charge transport in an ionic liquid IPT by considering both the cation and anion of the ionic liquid as mobile charge carriers, a phenomenon which is unique to ionic liquid IPTs compared to their water-based counterparts. The electrochemical behavior of the large ionic liquid ions is described by use of a modified Nernst-Planck equation which accounts for steric effects in double layer packing. The method of matched asymptotic expansions is applied to solve the resulting system of equations, and analytical expressions are derived for the nonlinear charge transferred and capacitance of the IPT as a function of the applied voltage. The boundary layer ionic concentration and charge density profiles and the leading order dynamics are also computed for the ionic liquid IPT. A simple equivalent circuit model is constructed in order to facilitate a comparison with experimental results. The implications of these model results in regards to actuation and charging performance characteristics of ionic liquid IPTs are noted.
6

Huang, Zhuoru, Zhejia Li, Ping Wang y Hao Wan. "A Miniaturized Electrochemical Gas Sensor Utilizing Ionic Liquid/Polymeric Ionic Liquid-Based Solid-State Electrolyte". En 2024 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). IEEE, 2024. http://dx.doi.org/10.1109/isoen61239.2024.10555941.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zevenbergen, Marcel A. G., Daan Wouters, Van-Anh T. Dam, Sywert H. Brongersma y Mercedes Crego-Calama. "Ionic-liquid based electrochemical ethylene sensor". En 2011 IEEE Sensors. IEEE, 2011. http://dx.doi.org/10.1109/icsens.2011.6126964.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Manhartsgruber, Bernhard y Vito Tič. "Hydraulic pump pulsation using Ionic Liquid". En International conference Fluid Power 2017. University of Maribor Press, 2017. http://dx.doi.org/10.18690/978-961-286-086-8.14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Oosthuizen, Hester, Elizabeth du Toit y Walter Focke. "Extruded cellulose/ionic liquid carbon scaffolds". En FRACTURE AND DAMAGE MECHANICS: Theory, Simulation and Experiment. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0028324.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Schroeder, Madeleine, Amelia Bruno y Paulo C. Lozano. "Ionic Liquid Electrospray Transient Emission Characterization". En AIAA SCITECH 2022 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2022. http://dx.doi.org/10.2514/6.2022-0037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Ionic liquid (IL)":

1

Holcomb, Don. Development of an Ionic-Liquid Absorption Heat Pump. Office of Scientific and Technical Information (OSTI), marzo de 2011. http://dx.doi.org/10.2172/1009964.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Maroncelli, Mark. Physical Chemistry of Reaction Dynamics in Ionic Liquid. Office of Scientific and Technical Information (OSTI), octubre de 2016. http://dx.doi.org/10.2172/1327486.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Mi, Xiang-Dong y Deng-Ke Yang. Ionic Effects in Bistable Reflective Cholesteric Liquid Crystals. Fort Belvoir, VA: Defense Technical Information Center, enero de 2000. http://dx.doi.org/10.21236/ada455816.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

McKendrick, Kenneth, Carla Waring, Paul A. Bagot y Matthew L. Costen. Chemical Reactivity as a Probe of Ionic-Liquid Surfaces. Fort Belvoir, VA: Defense Technical Information Center, abril de 2009. http://dx.doi.org/10.21236/ada503184.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Sweeney, Charles B., Mark Bundy, Mark Griep y Shashi P. Karna. Ionic Liquid Electrolytes for Flexible Dye-Sensitized Solar Cells. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2014. http://dx.doi.org/10.21236/ada611102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Haverhals, Luke. Potentiostat for Characterizing Microstructures at Ionic Liquid/Electrode Interfaces. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2015. http://dx.doi.org/10.21236/ad1008791.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Trulove, Paul C. Ionic Liquid Based Conversion of Biomass to Hydrocarbon Fuels. Fort Belvoir, VA: Defense Technical Information Center, agosto de 2008. http://dx.doi.org/10.21236/ada521096.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Catoire, Laurent. Chemical Kinetics Interpretation of Hypergolicity of Ionic Liquid-Based Systems. Fort Belvoir, VA: Defense Technical Information Center, abril de 2009. http://dx.doi.org/10.21236/ada506353.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Erlebacher, Jonah. Control of Reactivity in Nanoporous Metal/Ionic Liquid Composite Catalysts. Office of Scientific and Technical Information (OSTI), octubre de 2018. http://dx.doi.org/10.2172/1572166.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

D. COSTA y W. SMITH. ACTINIDE CHEMISTRY IN THE EMIC/A1C13 ROOM TEMPERATURE IONIC LIQUID. Office of Scientific and Technical Information (OSTI), octubre de 1999. http://dx.doi.org/10.2172/768242.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Pasar a la bibliografía