Literatura académica sobre el tema "Ion multivalent"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Ion multivalent".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Ion multivalent"
Iton, Zachery W. B. y Kimberly A. See. "Multivalent Ion Conduction in Inorganic Solids". Chemistry of Materials 34, n.º 3 (27 de enero de 2022): 881–98. http://dx.doi.org/10.1021/acs.chemmater.1c04178.
Texto completoProffit, Danielle L., Albert L. Lipson, Baofei Pan, Sang-Don Han, Timothy T. Fister, Zhenxing Feng, Brian J. Ingram, Anthony K. Burrell y John T. Vaughey. "Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells". MRS Proceedings 1773 (2015): 27–32. http://dx.doi.org/10.1557/opl.2015.590.
Texto completoRutt, Ann y Kristin A. Persson. "Expanding the Materials Search Space for Multivalent Cathodes". ECS Meeting Abstracts MA2022-02, n.º 4 (9 de octubre de 2022): 446. http://dx.doi.org/10.1149/ma2022-024446mtgabs.
Texto completoDong, Liubing, Wang Yang, Wu Yang, Yang Li, Wenjian Wu y Guoxiu Wang. "Multivalent metal ion hybrid capacitors: a review with a focus on zinc-ion hybrid capacitors". Journal of Materials Chemistry A 7, n.º 23 (2019): 13810–32. http://dx.doi.org/10.1039/c9ta02678a.
Texto completoSchauser, Nicole S., Ram Seshadri y Rachel A. Segalman. "Multivalent ion conduction in solid polymer systems". Molecular Systems Design & Engineering 4, n.º 2 (2019): 263–79. http://dx.doi.org/10.1039/c8me00096d.
Texto completoHasnat, Abul y Vinay A. Juvekar. "Dynamics of ion-exchange involving multivalent cations". Chemical Engineering Science 52, n.º 14 (julio de 1997): 2439–42. http://dx.doi.org/10.1016/s0009-2509(97)00047-x.
Texto completoKC, Bilash, Jinglong Guo, Robert Klie, D. Bruce Buchholz, Guennadi Evmenenko, Jae Jin Kim, Timothy Fister y Brian Ingram. "TEM Analysis of Multivalent Ion Battery Cathode". Microscopy and Microanalysis 26, S2 (30 de julio de 2020): 3170–72. http://dx.doi.org/10.1017/s1431927620024058.
Texto completoImanaka, Nobuhito y Shinji Tamura. "Development of Multivalent Ion Conducting Solid Electrolytes". Bulletin of the Chemical Society of Japan 84, n.º 4 (15 de abril de 2011): 353–62. http://dx.doi.org/10.1246/bcsj.20100178.
Texto completoLi, Zhong-Qiu, Yang Wang, Zeng-Qiang Wu, Ming-Yang Wu y Xing-Hua Xia. "Bioinspired Multivalent Ion Responsive Nanopore with Ultrahigh Ion Current Rectification". Journal of Physical Chemistry C 123, n.º 22 (13 de mayo de 2019): 13687–92. http://dx.doi.org/10.1021/acs.jpcc.9b02279.
Texto completoGates, Leslie y Niya Sa. "Investigation of Suitability of Electrolytes in a Trivalent System". ECS Meeting Abstracts MA2023-01, n.º 1 (28 de agosto de 2023): 425. http://dx.doi.org/10.1149/ma2023-011425mtgabs.
Texto completoTesis sobre el tema "Ion multivalent"
Keyzer, Evan. "Development of electrolyte salts for multivalent ion batteries". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288431.
Texto completoLi, Na. "Aluminum intercalation behaviours of Molecular Materials". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS222.pdf.
Texto completoThe first chapter introduces the concept and fundamental characteristics of molecular materials. It highlights their broad applications and the advantages they offer in electrochemical devices, along with an overview of their development in this field. Then, molecular materials are classified in three distinct ways based on different criteria. Each classification's subcategories are systematically explained, highlighting different aspects of molecular materials according to the classification method.Starting from multivalent ion batteries, the second chapter introduces the emerging aluminum ion battery as a storage system with great potential. The advantages of developing aluminum ion batteries are shown from the objective advantages of the natural abundance and price of aluminum itself, and the theoretical electrochemical potential of aluminum. Then, from the two aspects of electrolyte and electrode materials, aluminum ion batteries and their development status are summarized through detailed classification and examples.Therefore, based on our understanding of molecular materials and aluminum ion batteries, we conducted the following two projects:In a seminal work, we reported the lithium-ion storage capabilities of the iron-nickel bimetallic one-dimensional (1D) coordination polymer, {[FeIII(Tp)(CN)3]2[NiII(H2O)2]}n. The result first confirmed the reversible Li+ (de)intercalation in the 1D cyanide-bridged molecular material. This successful attempt in lithium-ion batteries aroused our interest in further exploring the possible insertion of aluminium ions into such one-dimensional cyano-bridge. In this work, we selected ([EMIm]Cl-AlCl3 ionic liquid with the ratio of 1.1:1(AlCl3 : ([EMIm]Cl) as electrolyte, and developed a series of one-dimensional (1D) material with the formula{[FeIII(Tp)(CN)3]2[MII(H2O)2]}n (M=Ni, Co, Mn, Zn, Cu). We expected the lower dimensionality and open framework of these compounds could permit easier ion (de)intercalation and a better Al-ion host capability. We can also hypothesize that the presence of organic shell (Tp ligands) in the chains could favor weaker electrostatic interactions between the inserted multivalent cation and the framework, and thus a better diffusion. Furthermore, comparisons between compounds bridged different divalent metals, including inactive zinc, are intended to help understand the multifaceted effects of bridged metals on compounds.Then, we conducted the second topic based on chloranilic acid. It is a series of 2D frameworks, as we would like to take advantage of the high stability of 2D structure and rely on the potential carbonyl groups to realize the intercalation and deintercation. As a result, the preliminary tests prove the stability of this series of frameworks. Since this is an ongoing project and we have only reported the data so far, further investigation of this series is needed
Wu-Tiu-Yen, Jenny. "Valorisation de la vinasse de canne à sucre : étude d'un procédé d'extraction d'un acide organique multivalent". Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLA008.
Texto completoCane stillage or vinasse, a byproduct of cane industry, contains from 5 to 7 g/L of aconitic acid, a valuable trivalent carboxylic acid belonging to the second class of building block chemicals. Vinasse also contains a variety of organic compounds (organic acids, amino-acids, colouring matters) and minerals (chlorides, sulphates), which makes purification not straightforward. The objective of this work is to develop the extraction of aconitic acid from stillage, with anion exchange as the heart of the process. In order to improve performances, the main characteristics of the selected anion-exchange resin (Lewatit S4528) are studied. Acid-base dosage and ion-exchange equilibrium experiments allow the total capacity of this support and the ion-exchange coefficients for the major competing anions (aconitate, chloride and sulfate) to be obtained. Separation performances in column are studied for different pH, different solutions (aconitic acid alone, synthetic and industrial stillage) and different resin forms (sulfate, chloride and free- base) in order to elucidate the separation mechanisms.Elution step is also investigated. Best conditions are for stillage at its natural pH (pH 4.5) on the resin under chloride form and HCl 0,5N as the eluant. A 28% DM purity and a 61% global recovery are achieved for aconitic acid in the eluate. Main impurities still remaining are chlorides or sulfates and coloring matter. Homopolar electrodialysis proves successful for removing nearly 100% chlorides from aconitic acid with a limited loss of the acid (< 15%). Adsorption step on a polystyrenic resin (XAD16) of an acidic eluate leads to the retention of 80% of the colorants, with only 12% of the acid lost. At last, the most interesting process combination associates microfiltration, anion-exchange, electrodialysis and adsorption. Purity is 37% MS, namely 3.6 higher than the original vinasse. This work enables aconitic acid purity to be improved by a factor of 2.6 compared with prior studies and to have a better comprehension of the mechanisms involved in its purification on weak anionic resin
Padigi, Sudhaprasanna Kumar. "Multivalent Rechargeable Batteries". PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2464.
Texto completoMehta, Mary Anne. "Multivalent ions in polymer electrolytes". Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/15517.
Texto completoMatsarskaia, Olga [Verfasser]. "Multivalent ions for tuning the phase behaviour of protein solutions / Olga Matsarskaia". Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1223451739/34.
Texto completoLouisfrema, Wilfired. "Caractérisation des oxydes nanoporeux contenant des ions lourds en milieu aqueux". Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE055/document.
Texto completoPorous crystalline aluminosilicates such as cationic zeolites, are widely studied because of their adsorption, ion exchange and catalytic properties, which explain their use in many industrial applications. Examples of the latter, which involve in particular multivalent cations, include detergents/softeners, catalytic cracking, or decontamination. Such industrial applications of zeolites all exploit their adsorption properties, which vary as a function of the pore size, comparable to the adsorbing molecules, or chemical composition, which results in charges within the framework, and in turn strong binding or repulsive sites. Importantly, in such applications zeolites are hydrated. Water is involved in the microscopic processes and thus influences all properties of the material. Molecular modeling is a weapon of choice to predict and understand the microscopic properties of the hydrated material, which are difficult to access experimentally. More precisely, the present modeling work deals with the behavior of multivalent cations in hydrated zeolites, in collaboration with experimentalists. Our study on zeolite Y faujasite first allowed us to clarify the migration of sodium cations upon dehydration and to predict the cation localisation in the hydrated material in the presence of divalent cations. Furthermore, we rationalized the coupled migration of cations and deformation of the framework upon water adsorption. To this end, we have developed a new method for the analysis of cation localization. The good performance of a polarizable force field demonstrated here paves the way for the study of the dynamics of the whole system, following in particular the simultaneous migration of cations and deformation of the framework. Such an approach could be later extended to other multivalent ions of industrial interest (rare Earths, f-block elements, ...)
Ritt, Marie-Claude. "Thermodynamics of interaction of macrocyclic ligands with multivalent ions and organic molecules of biological importance". Thesis, University of Surrey, 1991. http://epubs.surrey.ac.uk/843105/.
Texto completoGrawe, Thomas. "Multivalente Rezeptoren auf Phosphonatbasis molekulare Erkennung und Selbstorganisation in Wasser /". [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963938290.
Texto completoWolf, Marcell Verfasser] y Frank [Akademischer Betreuer] [Schreiber. "Effective interactions in liquid-liquid phase separated protein solutions induced by multivalent ions / Marcell Wolf ; Betreuer: Frank Schreiber". Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1197057757/34.
Texto completoLibros sobre el tema "Ion multivalent"
Conference, Society for Emblem Studies International. Polyvalenz und Multifunktionalität der Emblematik =: Multivalence and multifunctionality of the emblem : proceedings of the 5th International Conference of the Society for Emblem Studies. Frankfurt am Main: Oxford, 2002.
Buscar texto completoSociety for Emblem Studies. International Conference. Polyvalenz und Multifunktionalität der Emblematik =: Multivalence and multifunctionality of the emblem : proceedings of the 5th International Conference of the Society for Emblem Studies. Frankfurt am Main: Oxford, 2002.
Buscar texto completoNorris, Robin, Rebecca Stephenson y Renée R. Trilling. Feminist Approaches to Early Medieval English Studies. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland: Amsterdam University Press, 2022. http://dx.doi.org/10.5117/9789463721462.
Texto completoSociety for Emblem Studies. International Conference. Polyvalenz und Multifunktionalität der Emblematik: Akten des 5. Internationalen Kongresses der Society for Emblem Studies = Multivalence and multifunctionality of the emblem : proceedings of the 5th International Conference of the Society for Emblem Studies. New York: P. Lang, 2002.
Buscar texto completo1941-, Hag Kari y Broch Ole Jacob, eds. The ubiquitous quasidisk. Providence, Rhode Island: American Mathematical Society, 2012.
Buscar texto completoCulver, Annika A. y Norman Smith, eds. Manchukuo Perspectives. Hong Kong University Press, 2020. http://dx.doi.org/10.5790/hongkong/9789888528134.001.0001.
Texto completoMuller, Hannah Weiss. The Laws of Subjecthood. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190465810.003.0002.
Texto completogerm Society for Emblem Studies International Conference 1999 Munich. Polyvalenz Und Multifunktionalitat Der Emblematik: Akten Des 5. Internationalen Kongresses Der Society For Emblem Studies = Multivalence And Multifunctionality ... (Frankfurt Am Main, Germany), Bd. 65.). Peter Lang Publishing, 2002.
Buscar texto completoDavison, Claire. Cross-Channel Modernisms. Editado por Derek Ryan y Jane A. Goldman. Edinburgh University Press, 2020. http://dx.doi.org/10.3366/edinburgh/9781474441872.001.0001.
Texto completoEdwards, Leigh H. Country Music and Class. Editado por Travis D. Stimeling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780190248178.013.19.
Texto completoCapítulos de libros sobre el tema "Ion multivalent"
Dubinin, Vladimir N. "Multivalent Functions". En Condenser Capacities and Symmetrization in Geometric Function Theory, 277–304. Basel: Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0843-9_8.
Texto completoRocchi, Paolo. "Bivalent and Multivalent Logic". En Series in Computer Science, 121–29. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0109-1_13.
Texto completoHayman, Walter K. y Eleanor F. Lingham. "Univalent and Multivalent Functions". En Problem Books in Mathematics, 133–84. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25165-9_6.
Texto completoRichards, Sarah-Jane, Caroline I. Biggs y Matthew I. Gibson. "Multivalent Glycopolymer-Coated Gold Nanoparticles". En Methods in Molecular Biology, 169–79. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3130-9_14.
Texto completoPannier, Nadine, Valerie Humblet, Preeti Misra, John Frangioni V. y Wolfgang Maison. "Multivalent peptidomimetics for tumor targeting". En Advances in Experimental Medicine and Biology, 403–4. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-73657-0_174.
Texto completoBrown, Steven D. "Multivalent Display Using Hybrid Virus Nanoparticles". En Methods in Molecular Biology, 119–40. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7893-9_10.
Texto completoLiu, Cassie J. y Jennifer R. Cochran. "Engineering Multivalent and Multispecific Protein Therapeutics". En Engineering in Translational Medicine, 365–96. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4372-7_14.
Texto completoChinarev, Alexander A., Oxana E. Galanina y Nicolai V. Bovin. "Biotinylated Multivalent Glycoconjugates for Surface Coating". En Methods in Molecular Biology, 67–78. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-454-8_5.
Texto completoHuynh, Kim y Marie-Pierre Merlateau. "Uncertainty, Multivalence and Growth". En Human Capital Creation in an Economic Perspective, 196–213. Heidelberg: Physica-Verlag HD, 1994. http://dx.doi.org/10.1007/978-3-642-99776-1_10.
Texto completoYamini, Goli y Ekaterina M. Nestorovich. "Multivalent Inhibitors of Channel-Forming Bacterial Toxins". En Current Topics in Microbiology and Immunology, 199–227. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/82_2016_20.
Texto completoActas de conferencias sobre el tema "Ion multivalent"
Tan, Qiyan, Weichuan Guo, Gutian Zhao, Yajing Kan, Yinghua Qiu y Yunfei Chen. "Charge Inversion of Mica Surface in Multivalent Electrolytes". En ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62356.
Texto completoOh, K., U. C. Paek y T. F. Morse. "Photosensitivity in multi-valent rare earth ion doped aluminosilicate glass optical fiber". En Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C.: Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jsue.18.
Texto completoLapitsky, Yakov, Sabrina Alam, Udaka de Silva, Jennifer Brown, Carolina Mather y Youngwoo Seo. "Surfactant-loaded Polyelectrolyte/multivalent Ion Coacervates for the Multi-month Release of Antibacterial and Therapeutic Payloads". En Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.267.
Texto completoFeldmann, Felix, Emad W. Al-Shalabi y Waleed AlAmeri. "Carbonate Mineral Effect on Surface Charge Change During Low-Salinity Imbibition". En SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206013-ms.
Texto completoVaclavikova, Barbora. "INFLUENCE�OF�MULTIVALENT�IONS�FOR�ELECTROKINETIC�POTENTIAL�OF�QUARZ�AND�FELDSPAR". En SGEM2012 12th International Multidisciplinary Scientific GeoConference and EXPO. Stef92 Technology, 2012. http://dx.doi.org/10.5593/sgem2012/s04.v2005.
Texto completoMcKenna, Nick, Liane Guillou, Mohammad Javad Hosseini, Sander Bijl de Vroe, Mark Johnson y Mark Steedman. "Multivalent Entailment Graphs for Question Answering". En Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.emnlp-main.840.
Texto completoDatta, Subhra y Albert Conlisk. "Role of multivalent ions and electrical double layer overlap in electroosmotic nanoflows". En 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-1120.
Texto completoMcClary, Scott, Daniel Long, Kathryn Small, Alan Landers, Ana Sanz-Matias, Paul Kotula, David Prendergast, Katherine Jungjohann y Kevin Zavadil. "Electrolyte Design for Stable Multivalent Metal Anodes." En Proposed for presentation at the 32nd Annual Rio Grande Symposium on Advanced Materials held October 24-24, 2022 in Albuquerque, NM United States. US DOE, 2022. http://dx.doi.org/10.2172/2005914.
Texto completoKwak, Hyung Tae, Ali A. Yousef y Salah Al-Saleh. "New Insights on the Role of Multivalent Ions in Water-Carbonate Rock Interactions". En SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/169112-ms.
Texto completoMcClary, Scott, Daniel Long, Ana Sanz-Matias, Alan Landers, Kathryn Small, Paul Kotula, David Prendergast, Katherine Jungjohann y Kevin Zavadil. "Identifying multivalent metal anode interphases using cryogenic electron microscopy." En Proposed for presentation at the 2022 Fall American Chemical Society Meeting held August 21-25, 2022 in Chicago, IL. US DOE, 2022. http://dx.doi.org/10.2172/2004460.
Texto completoInformes sobre el tema "Ion multivalent"
Conlisk, A. T. y Minami Yoda. Transport of Multivalent Electrolyte Mixtures in Micro- and Nanochannels. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2013. http://dx.doi.org/10.21236/ada607255.
Texto completoPalmer, Guy H., Eugene Pipano, Terry F. McElwain, Varda Shkap y Donald P. Knowles, Jr. Development of a Multivalent ISCOM Vaccine against Anaplasmosis. United States Department of Agriculture, julio de 1993. http://dx.doi.org/10.32747/1993.7568763.bard.
Texto completoSchwarz, Haiqing L. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage. Office of Scientific and Technical Information (OSTI), enero de 2016. http://dx.doi.org/10.2172/1235990.
Texto completoCetinkaya, Asena. Multivalent Functions Involving Srivastava–Tomovski Generalization of the Mittag-Leffler Function Defined in the Nephroid Domain. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, febrero de 2021. http://dx.doi.org/10.7546/crabs.2021.02.02.
Texto completoSchmidt, Piet. Origins of Effective Charge of Multivalent Ions at a Membrane/Water Interface and Distribution of 2,3,4,5-Tetrachlorophenol in a Membrane Model System. Portland State University Library, enero de 2000. http://dx.doi.org/10.15760/etd.6925.
Texto completo