Literatura académica sobre el tema "Inverse stochastic dominance"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Inverse stochastic dominance".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Inverse stochastic dominance"
Andreoli, Francesco. "Robust Inference for Inverse Stochastic Dominance". Journal of Business & Economic Statistics 36, n.º 1 (27 de abril de 2017): 146–59. http://dx.doi.org/10.1080/07350015.2015.1137758.
Texto completoDe La Cal, Jesús y Javier Cárcamo. "Inverse Stochastic Dominance, Majorization, and Mean Order Statistics". Journal of Applied Probability 47, n.º 1 (marzo de 2010): 277–92. http://dx.doi.org/10.1239/jap/1269610831.
Texto completoDe La Cal, Jesús y Javier Cárcamo. "Inverse Stochastic Dominance, Majorization, and Mean Order Statistics". Journal of Applied Probability 47, n.º 01 (marzo de 2010): 277–92. http://dx.doi.org/10.1017/s0021900200006549.
Texto completoZoli, Claudio. "Inverse stochastic dominance, inequality measurement and Gini indices". Journal of Economics 77, S1 (diciembre de 2002): 119–61. http://dx.doi.org/10.1007/bf03052502.
Texto completoDentcheva, Darinka y Andrzej Ruszczyński. "Inverse stochastic dominance constraints and rank dependent expected utility theory". Mathematical Programming 108, n.º 2-3 (25 de abril de 2006): 297–311. http://dx.doi.org/10.1007/s10107-006-0712-x.
Texto completoDentcheva, Darinka y Andrzej Ruszczyński. "Inverse cutting plane methods for optimization problems with second-order stochastic dominance constraints". Optimization 59, n.º 3 (abril de 2010): 323–38. http://dx.doi.org/10.1080/02331931003696350.
Texto completoFerro, Giuseppe M. y Didier Sornette. "Stochastic representation decision theory: How probabilities and values are entangled dual characteristics in cognitive processes". PLOS ONE 15, n.º 12 (14 de diciembre de 2020): e0243661. http://dx.doi.org/10.1371/journal.pone.0243661.
Texto completoKabašinskas, Audrius, Kristina Šutienė, Miloš Kopa, Kęstutis Lukšys y Kazimieras Bagdonas. "Dominance-Based Decision Rules for Pension Fund Selection under Different Distributional Assumptions". Mathematics 8, n.º 5 (4 de mayo de 2020): 719. http://dx.doi.org/10.3390/math8050719.
Texto completoZoroa, N., E. Lesigne, M. J. Fernández-Sáez, P. Zoroa y J. Casas. "The coupon collector urn model with unequal probabilities in ecology and evolution". Journal of The Royal Society Interface 14, n.º 127 (febrero de 2017): 20160643. http://dx.doi.org/10.1098/rsif.2016.0643.
Texto completoZhang, Shu, Guang-Yu Sun, Jian Chen, Hao-Min Sun, An-Bang Sun y Guan-Jun Zhang. "On the Ohmic-dominant heating mode of capacitively coupled plasma inverted by boundary electron emission". Applied Physics Letters 121, n.º 1 (4 de julio de 2022): 014101. http://dx.doi.org/10.1063/5.0096316.
Texto completoTesis sobre el tema "Inverse stochastic dominance"
Yu, Tsai-Chi y 尤彩淇. "Inverse VIX vs Bond and Stock: Almost Stochastic Dominance Application". Thesis, 2019. http://ndltd.ncl.edu.tw/handle/b5737c.
Texto completoANDREOLI, Francesco. "On Dissimilarity and Opportunity Equalization (Sur la dissemblance et l'égalisation des chances)". Doctoral thesis, 2012. http://hdl.handle.net/11562/483350.
Texto completoThis thesis focuses on the measurement of dissimilarity in the distribution of relevant economic attributes and inequality of opportunity. Equality of opportunity has gained popularity for defining the relevant equalitarian objective for the distribution of a broad range of social and economic outcomes among social groups. I show that equality of opportunity concerns in policy evaluation always rely on dissimilarity comparisons between conditional distributions, and I provide empirically testable criteria to implement these comparisons. In the first chapter, I characterize axiomatically the dissimilarity partial order for discrete conditional distributions of groups across outcome classes. I prove that, when classes are permutable, dissimilarity is rationalized by matrix majorization and implemented by checking Zonotopes inclusion, while when classes are ordered the dissimilarity criterion resorts on a finite number of Lorenz majorization comparisons among groups' proportions, performed at different cumulation stages of the overall population. In the second chapter, I discuss the relevance of the dissimilarity partial order for the study of segregation at individual level. I fully characterize a well defined family of segregation indicators and I study one of them, the Gini exposure index, by using Italian data. The final chapter presents the equalization of opportunity criterion for outcome achievements. The guiding principle is that equality of opportunity is reached if there is no consensus, for a given class of preferences, in determining the disadvantaged group out of pairwise comparisons. I use the changes in (lack of) consensus on the existence and on the extent of this type of disadvantage to characterize the equalization of opportunity criterion. Meaningful restrictions and possible aggregation procedures are also discussed. I motivate that this criterion is identified within the rank dependent utility model, and I provide innovative inference results for inverse stochastic dominance to test it. Two applications on French data illustrate the equalizing impact of educational policies taking place early in students life.
Libros sobre el tema "Inverse stochastic dominance"
Moyes, Patrick. A characterization of inverse stochastic dominance for discrete distributions. [Colchester]: University of Essex, Dept. of Economics, 1990.
Buscar texto completoCapítulos de libros sobre el tema "Inverse stochastic dominance"
Zoli, Claudio. "Inverse Stochastic Dominance, Inequality Measurement and Gini Indices". En Inequalities: Theory, Experiments and Applications, 119–61. Vienna: Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6166-1_5.
Texto completoNowak, Maciej, Tadeusz Trzaskalik, Grażyna Trzpiot y Kazimierz Zaraś. "Inverse Stochastic Dominance and its Application in Production Process Control". En Multiple Objective and Goal Programming, 362–76. Heidelberg: Physica-Verlag HD, 2002. http://dx.doi.org/10.1007/978-3-7908-1812-3_28.
Texto completoActas de conferencias sobre el tema "Inverse stochastic dominance"
Carmichael, Howard J. "Antibunched light source using cavity-enhanced emission". En OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1988. http://dx.doi.org/10.1364/oam.1988.mm5.
Texto completoYoon, Heonjun, Byeng D. Youn y Chulmin Cho. "Piezoelectric Energy Harvesting Analysis Under Non-Stationary Random Vibrations". En ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-13547.
Texto completo