Literatura académica sobre el tema "Invariant Riemannian metrics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Invariant Riemannian metrics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Invariant Riemannian metrics"
Wang, Hui y Shaoqiang Deng. "Left Invariant Einstein–Randers Metrics on Compact Lie Groups". Canadian Mathematical Bulletin 55, n.º 4 (1 de diciembre de 2012): 870–81. http://dx.doi.org/10.4153/cmb-2011-145-6.
Texto completoParhizkar, M. y D. Latifi. "On the flag curvature of invariant (α,β)-metrics". International Journal of Geometric Methods in Modern Physics 13, n.º 04 (31 de marzo de 2016): 1650039. http://dx.doi.org/10.1142/s0219887816500390.
Texto completoBalashchenko, V. V., P. N. Klepikov, E. D. Rodionov y O. P. Khromova. "On the Cerbo Conjecture on Lie Groups with the Left-Invariant Lorentzian Metric". Izvestiya of Altai State University, n.º 1(123) (18 de marzo de 2022): 79–82. http://dx.doi.org/10.14258/izvasu(2022)1-12.
Texto completoHashinaga, Takahiro y Hiroshi Tamaru. "Three-dimensional solvsolitons and the minimality of the corresponding submanifolds". International Journal of Mathematics 28, n.º 06 (2 de mayo de 2017): 1750048. http://dx.doi.org/10.1142/s0129167x17500483.
Texto completoAsgari, Farhad y Hamid Reza Salimi Moghaddam. "Left invariant Randers metrics of Berwald type on tangent Lie groups". International Journal of Geometric Methods in Modern Physics 15, n.º 01 (19 de diciembre de 2017): 1850015. http://dx.doi.org/10.1142/s0219887818500159.
Texto completochen, Chao, Zhiqi chen y Yuwang Hu. "Einstein metrics and Einstein–Randers metrics on a class of homogeneous manifolds". International Journal of Geometric Methods in Modern Physics 15, n.º 04 (13 de marzo de 2018): 1850052. http://dx.doi.org/10.1142/s0219887818500524.
Texto completoArvanitoyeorgos, Andreas, V. V. Dzhepko y Yu G. Nikonorov. "Invariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups". Canadian Journal of Mathematics 61, n.º 6 (1 de diciembre de 2009): 1201–13. http://dx.doi.org/10.4153/cjm-2009-056-2.
Texto completoVylegzhanin, D. V., P. N. Klepikov, E. D. Rodionov y O. P. Khromova. "On Invariant Semisymmetric Connections on Three-Dimensional Non-Unimodular Lie Groups with the Metric of the Ricci Soliton". Izvestiya of Altai State University, n.º 4(120) (10 de septiembre de 2021): 86–90. http://dx.doi.org/10.14258/izvasu(2021)4-13.
Texto completoDeng, Shaoqiang y Zixin Hou. "Invariant Randers metrics on homogeneous Riemannian manifolds". Journal of Physics A: Mathematical and General 39, n.º 18 (19 de abril de 2006): 5249–50. http://dx.doi.org/10.1088/0305-4470/39/18/c01.
Texto completoDeng, Shaoqiang y Zixin Hou. "Invariant Randers metrics on homogeneous Riemannian manifolds". Journal of Physics A: Mathematical and General 37, n.º 15 (29 de marzo de 2004): 4353–60. http://dx.doi.org/10.1088/0305-4470/37/15/004.
Texto completoTesis sobre el tema "Invariant Riemannian metrics"
Vasconcelos, Rosa Tayane de. "O tensor de Ricci e campos de killing de espaços simétricos". reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25968.
Texto completoSubmitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-18T13:45:50Z No. of bitstreams: 1 2017_dis_rtvasconcelos.pdf: 555452 bytes, checksum: 4ff6c8fb7950682913acabed03e9d3d7 (MD5)
Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, A Dissertação de ROSA TAYANE DE VASCONCELOS apresenta a alguns erros que devem corrigidos, os mesmos seguem listados abaixo: 1- EPÍGRAFE (coloque o nome do autor da epígrafe todo em letra maiúscula) 2- RESUMO/ ABSTRACT (retire o recuo dos parágrafos do resumo e do abstract) 3- PALAVRAS-CHAVE/ KEYWORDS (coloque a letra inicial do primeiro elemento das palavras- -chave e das Keywords em maiúscula) 4- CITAÇÕES (as citações a autores, que aparecem em todo o trabalho, não estão no padrão ABNT: se for apenas uma referência geral a uma obra, deve se colocar o último sobrenome do autor em letra maiúscula e o ano da publicação, ex.: EBERLEIN (2005). Caso seja a citação de um trecho particular da obra deve acrescentar o número da página, ex.: EBERLEIN (2005, p. 30). OBS.: as citações não devem estar entre colchetes. 5- TÍTULOS DOS CAPÍTULOS E SEÇÕES (coloque os títulos dos capítulos e seções em negrito) 6- REFERÊNCIAS (as referências bibliográficas não estão no padrão ABNT: apenas o último sobrenome do autor, que inicia a referência, deve estar em letra maiúscula, o restante do nome deve estar em letra minúscula. EX.: BROCKER, Theodor; TOM DIECK, Tammo. Representations of compact Lie groups, v. 98. Springer Science & Business Media, 2013. Atenciosamente, on 2017-09-18T15:04:06Z (GMT)
Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-19T13:33:40Z No. of bitstreams: 1 2017_dis_rtvasconcelos.pdf: 522079 bytes, checksum: ff99004fbe22e922f704a6a87365d3b6 (MD5)
Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-21T12:18:22Z (GMT) No. of bitstreams: 1 2017_dis_rtvasconcelos.pdf: 522079 bytes, checksum: ff99004fbe22e922f704a6a87365d3b6 (MD5)
Made available in DSpace on 2017-09-21T12:18:22Z (GMT). No. of bitstreams: 1 2017_dis_rtvasconcelos.pdf: 522079 bytes, checksum: ff99004fbe22e922f704a6a87365d3b6 (MD5) Previous issue date: 2017-09-13
This work brings a smooth and self-contained introduction to the study of the most basic aspects of symmetric spaces, having as its nal goal the characterization of the Killing vector fields and of the Ricci tensor of such riemannian manifolds. Several of the results presented in the initial chapter are not easily found, in the Diferential Geometry literature, in a way as accessible and self-contained as here. This being said, we believe that this work embodies some didactic relevance, for it others students interested in symmetric spaces a relatively smooth first contact. We shall generally look at symmetric spaces as homogeneous manifolds G=H, where G is a Lie group and H is a closed Lie subgroup of G, such that the natural mapping : G ! G=H is a riemannian submersion. Ultimately, this map allows us to describe the relationships between the curvature, the Ricci tensor and the geodesics of G and G=H. For our purposes, the crucial remark is that, under appropriate circumstances, one guarantees the existence, in G=H, of a metric for which left translations are isometries. Hence, a one-parameter family of such isometries gives rise to a Killing vector field, which turn into a Jacobi vector eld when restricted to a geodesic. We present explicit expressions for such Jacobi vector elds, showing that they only depend on the eigenvalues of the linear operator TX : g ! g given by TX = (adX)2, for certain vector elds X 2 g.
Este trabalho traz uma introdução suave e autocontida ao estudo dos aspectos mais básicos de espaços simétricos, tendo como objetivo final a caracterização dos campos de Killing e do tensor de Ricci de tais variedades riemannianas. Vários dos resultados obtidos nos capítulos iniciais não são encontrados, na literatura de Geometria Diferencial, de maneira tão acessível e autocontida como apresentados aqui. Com isso, acreditamos que o trabalho reveste-se de alguma relevância didática, por oferecer aos alunos interessados no estudo de espaços simétricos um primeiro contato relativamente suave. Em linhas gerais, veremos espaços simétricos como variedades homogêneas G=H, onde G e um grupo de Lie e H um subgrupo de Lie fechado de G, tais que a aplicação natural: G ! G=H seja uma submersão riemanniana. Através dela, descrevemos relações entre a curvatura, o tensor de Ricci e as geodésicas de G e G=H. Para nossos propósitos, a observação crucial e que, sob certas hipóteses, garantimos a existência, em G=H, de uma métrica cujas translações a esquerda são isometrias. Portanto, uma família a um parâmetro de tais isometrias d a origem a um campo de Killing que, por sua vez, restrito a geodésicas torna-se um campo de Jacobi. Apresentamos expressões para esses campos de Jacobi, mostrando que os mesmos só dependem dos autovalores do operador linear TX : g ! g dado por TX = (adX)2, para certos campos X 2 g.
Karki, Manoj Babu. "Invariant Riemannain metrics on four-dimensional Lie group". University of Toledo / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1438906778.
Texto completoAlekseevsky, Dmitri, Andreas Kriegl, Mark Losik, Peter W. Michor y Peter Michor@esi ac at. "The Riemannian Geometry of Orbit Spaces. The Metric, Geodesics, and". ESI preprints, 2001. ftp://ftp.esi.ac.at/pub/Preprints/esi997.ps.
Texto completoBecker, Christian. "On the Riemannian geometry of Seiberg-Witten moduli spaces". Phd thesis, [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=975744771.
Texto completoPediconi, Francesco. "Geometric aspects of locally homogeneous Riemannian spaces". Doctoral thesis, 2020. http://hdl.handle.net/2158/1197175.
Texto completoLibros sobre el tema "Invariant Riemannian metrics"
An Introduction to Extremal Kahler Metrics. Providence, Rhode Island: Springer, 2014.
Buscar texto completoCapítulos de libros sobre el tema "Invariant Riemannian metrics"
Tamaru, Hiroshi. "The Space of Left-Invariant Riemannian Metrics". En Springer Proceedings in Mathematics & Statistics, 315–26. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56021-0_17.
Texto completoAlekseevskii, D. V. y B. A. Putko. "On the completeness of left-invariant pseudo-Riemannian metrics on lie groups". En Lecture Notes in Mathematics, 171–85. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/bfb0085954.
Texto completoLeutwiler, Heinz. "A riemannian metric invariant under Möbius transformations in ℝn". En Lecture Notes in Mathematics, 223–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0081257.
Texto completoBahadır, Oguzhan. "Curvature Tensors of Screen Semi-invariant Half-Lightlike Submanifolds of a Semi-Riemannian Product Manifold with Quarter-Symmetric Non-metric Connection". En Mathematical Methods and Modelling in Applied Sciences, 136–46. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43002-3_13.
Texto completoFefferman, Charles y C. Robin Graham. "Jet Isomorphism". En The Ambient Metric (AM-178). Princeton University Press, 2011. http://dx.doi.org/10.23943/princeton/9780691153131.003.0008.
Texto completoFefferman, Charles y C. Robin Graham. "Scalar Invariants". En The Ambient Metric (AM-178). Princeton University Press, 2011. http://dx.doi.org/10.23943/princeton/9780691153131.003.0009.
Texto completoFefferman, Charles y C. Robin Graham. "Introduction". En The Ambient Metric (AM-178). Princeton University Press, 2011. http://dx.doi.org/10.23943/princeton/9780691153131.003.0001.
Texto completoNolte, David D. "Relativistic Dynamics". En Introduction to Modern Dynamics, 385–425. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780198844624.003.0012.
Texto completoTu, Loring W. "Integration on a Compact Connected Lie Group". En Introductory Lectures on Equivariant Cohomology, 103–14. Princeton University Press, 2020. http://dx.doi.org/10.23943/princeton/9780691191751.003.0013.
Texto completo"Contact Metric Manifolds and Submanifolds". En Pseudo-Riemannian Geometry, δ-Invariants and Applications, 241–50. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814329644_0012.
Texto completoActas de conferencias sobre el tema "Invariant Riemannian metrics"
Zhengwu Zhang, Eric Klassen, Anuj Srivastava, Pavan Turaga y Rama Chellappa. "Blurring-invariant Riemannian metrics for comparing signals and images". En 2011 IEEE International Conference on Computer Vision (ICCV). IEEE, 2011. http://dx.doi.org/10.1109/iccv.2011.6126442.
Texto completoZhang, Yi y Kwun-Lon Ting. "Point-Line Distance Under Riemannian Metrics". En ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-84637.
Texto completoBerestovskii, Valerii Nikolaevich. "Geodesics and curvatures of left-invariant sub-Riemannian metrics on Lie groups". En International Conference "Optimal Control and Differential Games" dedicated to the 110th anniversary of L. S. Pontryagin. Moscow: Steklov Mathematical Institute, 2018. http://dx.doi.org/10.4213/proc22961.
Texto completoIlea, Ioana, Lionel Bombrun Bombrun, Salem Said y Yannick Berthoumieu. "Covariance Matrices Encoding Based on the Log-Euclidean and Affine Invariant Riemannian Metrics". En 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 2018. http://dx.doi.org/10.1109/cvprw.2018.00080.
Texto completoPark, Frank C. "A Geometric Framework for Optimal Surface Design". En ASME 1992 Design Technical Conferences. American Society of Mechanical Engineers, 1992. http://dx.doi.org/10.1115/detc1992-0171.
Texto completoParaskevopoulos, Elias y Sotirios Natsiavas. "On a Consistent Application of Newton’s Law to Constrained Mechanical Systems". En ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12346.
Texto completo