Artículos de revistas sobre el tema "Intronic polyadenylation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Intronic polyadenylation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Tikhonov, M. V., P. G. Georgiev y O. G. Maksimenko. "Competition within Introns: Splicing Wins over Polyadenylation via a General Mechanism". Acta Naturae 5, n.º 4 (15 de diciembre de 2013): 52–61. http://dx.doi.org/10.32607/20758251-2013-5-4-52-61.
Texto completoWang, Xiuye, Liang Liu, Adam W. Whisnant, Thomas Hennig, Lara Djakovic, Nabila Haque, Cindy Bach et al. "Mechanism and consequences of herpes simplex virus 1-mediated regulation of host mRNA alternative polyadenylation". PLOS Genetics 17, n.º 3 (8 de marzo de 2021): e1009263. http://dx.doi.org/10.1371/journal.pgen.1009263.
Texto completoLou, Hua, Karla M. Neugebauer, Robert F. Gagel y Susan M. Berget. "Regulation of Alternative Polyadenylation by U1 snRNPs and SRp20". Molecular and Cellular Biology 18, n.º 9 (1 de septiembre de 1998): 4977–85. http://dx.doi.org/10.1128/mcb.18.9.4977.
Texto completoSpraggon, Lee y Luca Cartegni. "U1 snRNP-Dependent Suppression of Polyadenylation: Physiological Role and Therapeutic Opportunities in Cancer". International Journal of Cell Biology 2013 (2013): 1–10. http://dx.doi.org/10.1155/2013/846510.
Texto completoScholl, Amanda, Alexander Muselman y Dong-Er Zhang. "An Intronic Suppressor Element Regulates RUNX1 Alternative Polyadenylation". Blood 126, n.º 23 (3 de diciembre de 2015): 3578. http://dx.doi.org/10.1182/blood.v126.23.3578.3578.
Texto completoDuan, Cheng-Guo, Xingang Wang, Lingrui Zhang, Xiansong Xiong, Zhengjing Zhang, Kai Tang, Li Pan et al. "A protein complex regulates RNA processing of intronic heterochromatin-containing genes in Arabidopsis". Proceedings of the National Academy of Sciences 114, n.º 35 (14 de agosto de 2017): E7377—E7384. http://dx.doi.org/10.1073/pnas.1710683114.
Texto completoWang, Ruijia y Bin Tian. "APAlyzer: a bioinformatics package for analysis of alternative polyadenylation isoforms". Bioinformatics 36, n.º 12 (22 de abril de 2020): 3907–9. http://dx.doi.org/10.1093/bioinformatics/btaa266.
Texto completoLee, Shih-Han, Irtisha Singh, Sarah Tisdale, Omar Abdel-Wahab, Christina S. Leslie y Christine Mayr. "Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia". Nature 561, n.º 7721 (27 de agosto de 2018): 127–31. http://dx.doi.org/10.1038/s41586-018-0465-8.
Texto completoDubbury, Sara J., Paul L. Boutz y Phillip A. Sharp. "CDK12 regulates DNA repair genes by suppressing intronic polyadenylation". Nature 564, n.º 7734 (28 de noviembre de 2018): 141–45. http://dx.doi.org/10.1038/s41586-018-0758-y.
Texto completoWang, Hong-Wei. "A Link between Intronic Polyadenylation and HR Maintenance Discovered". Biochemistry 58, n.º 14 (28 de marzo de 2019): 1835–36. http://dx.doi.org/10.1021/acs.biochem.9b00202.
Texto completoKan, J. "Intronic polyadenylation in the human glycinamide ribonucleotide formyltransferase gene". Nucleic Acids Research 25, n.º 15 (1 de agosto de 1997): 3118–23. http://dx.doi.org/10.1093/nar/25.15.3118.
Texto completoLepennetier, Gildas y Francesco Catania. "Exploring the Impact of Cleavage and Polyadenylation Factors on Pre-mRNA Splicing Across Eukaryotes". G3 Genes|Genomes|Genetics 7, n.º 7 (1 de julio de 2017): 2107–14. http://dx.doi.org/10.1534/g3.117.041483.
Texto completoLiu, Liang, Elizabeth Forbes y Wei Zhang. "Abstract 5646: Altered intronic polyadenylation by mutant p53 impairs transcription of DNA repair genes in lung cancer". Cancer Research 84, n.º 6_Supplement (22 de marzo de 2024): 5646. http://dx.doi.org/10.1158/1538-7445.am2024-5646.
Texto completoWinstanley-Zarach, Phaedra, Gregor Rot, Shweta Kuba, Aibek Smagul, Mandy J. Peffers y Simon R. Tew. "Analysis of RNA Polyadenylation in Healthy and Osteoarthritic Human Articular Cartilage". International Journal of Molecular Sciences 24, n.º 7 (1 de abril de 2023): 6611. http://dx.doi.org/10.3390/ijms24076611.
Texto completoRani, Abdul Qawee Mahyoob, Tetsushi Yamamoto, Tatsuya Kawaguchi, Kazuhiro Maeta, Hiroyuki Awano, Hisahide Nishio y Masafumi Matsuo. "Intronic Alternative Polyadenylation in the Middle of the DMD Gene Produces Half-Size N-Terminal Dystrophin with a Potential Implication of ECG Abnormalities of DMD Patients". International Journal of Molecular Sciences 21, n.º 10 (18 de mayo de 2020): 3555. http://dx.doi.org/10.3390/ijms21103555.
Texto completoMueller, Alisa A., Cindy T. van Velthoven, Kathryn D. Fukumoto, Tom H. Cheung y Thomas A. Rando. "Intronic polyadenylation of PDGFRα in resident stem cells attenuates muscle fibrosis". Nature 540, n.º 7632 (28 de noviembre de 2016): 276–79. http://dx.doi.org/10.1038/nature20160.
Texto completoSommer, Jan, Christoph Garbers, Janina Wolf, Ahmad Trad, Jens M. Moll, Markus Sack, Rainer Fischer et al. "Alternative Intronic Polyadenylation Generates the Interleukin-6 Trans-signaling Inhibitor sgp130-E10". Journal of Biological Chemistry 289, n.º 32 (27 de junio de 2014): 22140–50. http://dx.doi.org/10.1074/jbc.m114.560938.
Texto completoWang, Ruijia, Dinghai Zheng, Lu Wei, Qingbao Ding y Bin Tian. "Regulation of Intronic Polyadenylation by PCF11 Impacts mRNA Expression of Long Genes". Cell Reports 26, n.º 10 (marzo de 2019): 2766–78. http://dx.doi.org/10.1016/j.celrep.2019.02.049.
Texto completoCastelo-Branco, Pedro, Andre Furger, Matthew Wollerton, Christopher Smith, Alexandra Moreira y Nick Proudfoot. "Polypyrimidine Tract Binding Protein Modulates Efficiency of Polyadenylation". Molecular and Cellular Biology 24, n.º 10 (15 de mayo de 2004): 4174–83. http://dx.doi.org/10.1128/mcb.24.10.4174-4183.2004.
Texto completoTian, Shuye, Bin Zhang, Yuhao He, Zhiyuan Sun, Jun Li, Yisheng Li, Hongyang Yi et al. "CRISPR-iPAS: a novel dCAS13-based method for alternative polyadenylation interference". Nucleic Acids Research 50, n.º 5 (22 de febrero de 2022): e26-e26. http://dx.doi.org/10.1093/nar/gkac108.
Texto completoKaer, Kristel, Jelena Branovets, Anni Hallikma, Pilvi Nigumann y Mart Speek. "Intronic L1 Retrotransposons and Nested Genes Cause Transcriptional Interference by Inducing Intron Retention, Exonization and Cryptic Polyadenylation". PLoS ONE 6, n.º 10 (13 de octubre de 2011): e26099. http://dx.doi.org/10.1371/journal.pone.0026099.
Texto completoElton, Terry S., Victor A. Hernandez, Jessika Carvajal-Moreno, Xinyi Wang, Deborah Ipinmoroti y Jack C. Yalowich. "Intronic Polyadenylation in Acquired Cancer Drug Resistance Circumvented by Utilizing CRISPR/Cas9 with Homology-Directed Repair: The Tale of Human DNA Topoisomerase IIα". Cancers 14, n.º 13 (27 de junio de 2022): 3148. http://dx.doi.org/10.3390/cancers14133148.
Texto completoDruhan, Lawrence J., Amanda Lance, Alicia Hamilton, Nury M. Steuerwald, Elise Tjaden y Belinda R. Avalos. "Alternative Splicing and Intronic Polyadenylation Post-Transcriptionally Regulate CSF3R Via a Cryptic Exon". Blood 134, Supplement_1 (13 de noviembre de 2019): 2462. http://dx.doi.org/10.1182/blood-2019-129102.
Texto completoShulman, Eldad David y Ran Elkon. "Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data". Nucleic Acids Research 47, n.º 19 (10 de septiembre de 2019): 10027–39. http://dx.doi.org/10.1093/nar/gkz781.
Texto completoTsuchiya, T. y T. Eulgem. "An alternative polyadenylation mechanism coopted to the Arabidopsis RPP7 gene through intronic retrotransposon domestication". Proceedings of the National Academy of Sciences 110, n.º 37 (12 de agosto de 2013): E3535—E3543. http://dx.doi.org/10.1073/pnas.1312545110.
Texto completoGong, Qiuming, Matthew R. Stump y Zhengfeng Zhou. "Upregulation of functional Kv11.1 isoform expression by inhibition of intronic polyadenylation with antisense morpholino oligonucleotides". Journal of Molecular and Cellular Cardiology 76 (noviembre de 2014): 26–32. http://dx.doi.org/10.1016/j.yjmcc.2014.08.007.
Texto completoDruhan, Lawrence J., Amanda Lance, Alicia Hamilton, Nury M. Steuerwald, Elise Tjaden y Belinda R. Avalos. "Altered splicing and intronic polyadenylation of CSF3R via a cryptic exon in acute myeloid leukemia". Leukemia Research 92 (mayo de 2020): 106349. http://dx.doi.org/10.1016/j.leukres.2020.106349.
Texto completoWinchester, Joni S., Eric C. Rouchka, Naomi S. Rowland y Nancy A. Rice. "In Silico characterization of phosphorylase kinase: Evidence for an alternate intronic polyadenylation site in PHKG1". Molecular Genetics and Metabolism 92, n.º 3 (noviembre de 2007): 234–42. http://dx.doi.org/10.1016/j.ymgme.2007.06.015.
Texto completoWang, Pingzhang, Peng Yu, Peng Gao, Taiping Shi y Dalong Ma. "Discovery of novel human transcript variants by analysis of intronic single-block EST with polyadenylation site". BMC Genomics 10, n.º 1 (2009): 518. http://dx.doi.org/10.1186/1471-2164-10-518.
Texto completoPan, Zhenhua, Haibo Zhang, Lisa K. Hague, Ju Youn Lee, Carol S. Lutz y Bin Tian. "An intronic polyadenylation site in human and mouse CstF-77 genes suggests an evolutionarily conserved regulatory mechanism". Gene 366, n.º 2 (febrero de 2006): 325–34. http://dx.doi.org/10.1016/j.gene.2005.09.024.
Texto completoZhang, Ganggang, Bin Lan, Xin Zhang, Mengyao Lin, Yi Liu, Junsong Chen y Fang Guo. "AR-A014418 regulates intronic polyadenylation and transcription of PD-L1 through inhibiting CDK12 and CDK13 in tumor cells". Journal for ImmunoTherapy of Cancer 11, n.º 5 (mayo de 2023): e006483. http://dx.doi.org/10.1136/jitc-2022-006483.
Texto completoPawlicki, Jan M. y Joan A. Steitz. "Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production". Journal of Cell Biology 182, n.º 1 (14 de julio de 2008): 61–76. http://dx.doi.org/10.1083/jcb.200803111.
Texto completoUrbanczyk, Andreas, Anselm Jünemann y Ralf Enz. "PKCζ-interacting protein ZIP3 is generated by intronic polyadenylation, and is expressed in the brain and retina of the rat". Biochemical Journal 433, n.º 1 (15 de diciembre de 2010): 43–50. http://dx.doi.org/10.1042/bj20101111.
Texto completoWu, Zhe, Robert Ietswaart, Fuquan Liu, Hongchun Yang, Martin Howard y Caroline Dean. "Quantitative regulation of FLC via coordinated transcriptional initiation and elongation". Proceedings of the National Academy of Sciences 113, n.º 1 (22 de diciembre de 2015): 218–23. http://dx.doi.org/10.1073/pnas.1518369112.
Texto completoKan, Julie L. C. y Richard G. Moran. "Analysis of a Mouse Gene Encoding Three Steps of Purine Synthesis Reveals Use of an Intronic Polyadenylation Signal without Alternative Exon Usage". Journal of Biological Chemistry 270, n.º 4 (27 de enero de 1995): 1823–32. http://dx.doi.org/10.1074/jbc.270.4.1823.
Texto completoThomas, Christie P., Janet I. Andrews y Kang Z. Liu. "Intronic polyadenylation signal sequences and alternate splicing generate human soluble Fltl variants and regulate the abundance of soluble Flt1 in the placenta". FASEB Journal 21, n.º 14 (5 de julio de 2007): 3885–95. http://dx.doi.org/10.1096/fj.07-8809com.
Texto completoSamur, Mehmet K., Irtisha Singh, Lee Shih-Han, Adam Samuel Sperling, Mariateresa Fulciniti, Yu-Tzu Tai, Giovanni Parmigiani, Christina S. Leslie, Christine Mayr y Nikhil C. Munshi. "3' Untranslated Region (UTR) Alterations Are Frequently Targeted By MM-Related Mirnas and Affects the Clinical Outcome". Blood 128, n.º 22 (2 de diciembre de 2016): 4447. http://dx.doi.org/10.1182/blood.v128.22.4447.4447.
Texto completoThomas, Christie P., Nandita S. Raikwar, Elizabeth A. Kelley y Kang Z. Liu. "Alternate processing of Flt1 transcripts is directed by conserved cis -elements within an intronic region of FLT1 that reciprocally regulates splicing and polyadenylation". Nucleic Acids Research 38, n.º 15 (10 de abril de 2010): 5130–40. http://dx.doi.org/10.1093/nar/gkq198.
Texto completoLian, Jin, Zheng Lian, Alexander Karpikov, Milind Mahajan, Mark Gerstein, Michael Snyde y Sherman Weissman. "Genomic Distribution of Transcripts and DNA Associated Proteins in One Percent of the Genome of Erythroid and Myeloid Cells." Blood 108, n.º 11 (16 de noviembre de 2006): 4201. http://dx.doi.org/10.1182/blood.v108.11.4201.4201.
Texto completoLuo, Wenting, Zhe Ji, Zhenhua Pan, Bei You, Mainul Hoque, Wencheng Li, Samuel I. Gunderson y Bin Tian. "The Conserved Intronic Cleavage and Polyadenylation Site of CstF-77 Gene Imparts Control of 3′ End Processing Activity through Feedback Autoregulation and by U1 snRNP". PLoS Genetics 9, n.º 7 (11 de julio de 2013): e1003613. http://dx.doi.org/10.1371/journal.pgen.1003613.
Texto completoGanaie, Safder S., Aaron Yun Chen, Chun Huang, Peng Xu, Steve Kleiboeker, Aifang Du y Jianming Qiu. "RNA Binding Protein RBM38 Regulates Expression of the 11-Kilodalton Protein of Parvovirus B19, Which Facilitates Viral DNA Replication". Journal of Virology 92, n.º 8 (7 de febrero de 2018): e02050-17. http://dx.doi.org/10.1128/jvi.02050-17.
Texto completoAmeri, Afshin, Deepa K. Machiah, Darlene Livingston, Thuy T. Tran, Cynthia Channell, Kristen L. Toren, Valerie Crenshaw y Tom Howard. "A Novel 5bp Deletion Mutation in the Factor X (FX) Gene, Designated FX-Augusta, Causes Severe FX Deficiency Possibly by a Unique Mechanism Involving mRNAs that Lack Inframe Stop Codons." Blood 104, n.º 11 (16 de noviembre de 2004): 1045. http://dx.doi.org/10.1182/blood.v104.11.1045.1045.
Texto completoHernandez, Victor A., Jessika Carvajal-Moreno, Xinyi Wang, Maciej Pietrzak, Jack C. Yalowich y Terry S. Elton. "Use of CRISPR/Cas9 with homology-directed repair to silence the human topoisomerase IIα intron-19 5’ splice site: Generation of etoposide resistance in human leukemia K562 cells". PLOS ONE 17, n.º 5 (26 de mayo de 2022): e0265794. http://dx.doi.org/10.1371/journal.pone.0265794.
Texto completoMillar, R., D. Conklin, C. Lofton-Day, E. Hutchinson, B. Troskie, N. Illing, SC Sealfon y J. Hapgood. "A novel human GnRH receptor homolog gene: abundant and wide tissue distribution of the antisense transcript". Journal of Endocrinology 162, n.º 1 (1 de julio de 1999): 117–26. http://dx.doi.org/10.1677/joe.0.1620117.
Texto completoFrank, Sander, Ilsa Coleman, Navonil De Sarkar, Dmytro Rudoy, Valeri Vasioukhin y Pete Nelson. "Abstract B060: Characterization of DNA repair defects in CDK12 mutant prostate cancer and the identification of differential vulnerabilities". Cancer Research 83, n.º 11_Supplement (2 de junio de 2023): B060. http://dx.doi.org/10.1158/1538-7445.prca2023-b060.
Texto completoTian, B., Z. Pan y J. Y. Lee. "Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing". Genome Research 17, n.º 2 (8 de enero de 2007): 156–65. http://dx.doi.org/10.1101/gr.5532707.
Texto completoCooke, Charles y James C. Alwine. "Characterization of Specific Protein-RNA Complexes Associated with the Coupling of Polyadenylation and Last-Intron Removal". Molecular and Cellular Biology 22, n.º 13 (1 de julio de 2002): 4579–86. http://dx.doi.org/10.1128/mcb.22.13.4579-4586.2002.
Texto completoIsmail, Said I., Jonathan B. Rohll, Susan M. Kingsman, Alan J. Kingsman y Mark Uden. "Use of Intron-Disrupted Polyadenylation Sites To Enhance Expression and Safety of Retroviral Vectors". Journal of Virology 75, n.º 1 (1 de enero de 2001): 199–204. http://dx.doi.org/10.1128/jvi.75.1.199-204.2001.
Texto completoYamakawa, Hiroko, Shunsuke Ebara, Akio Mizutani, Misaki Yoshida, Midori Sugiyama, Koji Yamamoto, Daisuke Komura et al. "Abstract 3301: Translational research of CDK12/13 inhibitor, CTX-439, informing clinical trial strategy". Cancer Research 84, n.º 6_Supplement (22 de marzo de 2024): 3301. http://dx.doi.org/10.1158/1538-7445.am2024-3301.
Texto completoQiu, Jianming, Ramnath Nayak y David J. Pintel. "Alternative Polyadenylation of Adeno-Associated Virus Type 5 RNA within an Internal Intron Is Governed by both a Downstream Element within the Intron 3′ Splice Acceptor and an Element Upstream of the P41 Initiation Site". Journal of Virology 78, n.º 1 (1 de enero de 2004): 83–93. http://dx.doi.org/10.1128/jvi.78.1.83-93.2004.
Texto completo