Artículos de revistas sobre el tema "Intermediate electronic band"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Intermediate electronic band.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Intermediate electronic band".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Martí, Antonio y Antonio Luque. "Intermediate Band Solar Cells". Advances in Science and Technology 74 (octubre de 2010): 143–50. http://dx.doi.org/10.4028/www.scientific.net/ast.74.143.

Texto completo
Resumen
Intermediate band (IB) solar cells aim to exploit in solar cells the energy of below bandgap energy photons. They are based in a material that, in addition to the conventional conduction and valence bands, has an electronic band (named intermediate band) located inside the bandgap and separated from the conduction and valence band by a null density of states. The theoretical limiting efficiency of these cells (63.2 % at maximum concentration) is equivalent to a triple junction solar cell but requiring a single material instead. Several approaches are being followed worldwide to take to practice this concept that can be divided into two categories: quantum dots and bulk materials. This paper reviews the main experimental results obtained under both approaches.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Chen, Ping, Hua Zhang, Pingying Tang y Binbin Li. "A hybrid density functional design of intermediate band semiconductor for photovoltaic application based on group IV elements (Si, Ge, Sn, and Pb)-doped CdIn2S4". Journal of Applied Physics 131, n.º 13 (7 de abril de 2022): 135702. http://dx.doi.org/10.1063/5.0082631.

Texto completo
Resumen
The CdIn2S4 semiconductor is considered a potential host for the implementation of intermediate band solar cells due to its ideal bandgap value and excellent photoelectric property. In this paper, the electronic structures of group IV elements (Si, Ge, Sn, and Pb)-doped CdIn2S4 have been investigated by using hybrid density functional calculations. In the case of Ge, Sn, and Pb doping, an isolated and partially occupied intermediated band with delocalized characteristics could be created in the bandgap of the host. The results of the projected density of states reveal that the intermediated band is derived from the hybridization between the S-3 p and dopant- ns states. Thanks to the assistance of the impurity band, the optical absorption ability of the intermediate band semiconductor is greatly enhanced. Based on the detailed balance theory, the theoretical efficiencies of intermediate band solar cells made by Ge- and Pb-doped CdIn2S4 are estimated to be 45.0% and 49.2%, respectively, which are superior to the Shockley and Queisser limit (40.7%) of a single junction photovoltaic device. Moreover, the experimental synthesis of these impurity semiconductors is relatively feasible because substitutional doping at the octahedral position is energetically favorable. These findings would be helpful to the development of a high-efficiency intermediate band solar cell.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Pattar, Madiwalesh y Gaurav Anand. "Novel module architecture for wideband multichannel multi band down conversion with built in Local oscillators". Journal of Physics: Conference Series 2250, n.º 1 (1 de abril de 2022): 012011. http://dx.doi.org/10.1088/1742-6596/2250/1/012011.

Texto completo
Resumen
Abstract Wide band down converters employed in the field of electronic warfare (EW) process multiple channels simultaneously and in each channel RF signal is split and processed in multi bands. In each channel, RF signal ranging from L to C Band is split into three bands as L, S & C Bands. L Band is directly processed S & C Bands are down converted to identical Intermediate frequency (IF) in UHF to L Band using two different local oscillators (LOs) generated internally. Local Oscillator with low Phase Noise did not introduce jitter on RF input. Module architecture described here is for four channels, extendable to multiple channels.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Wang, Qiao-Yi y Judy Rorison. "Modelling of quantum dot intermediate band solar cells: effect of intermediate band linewidth broadening". IET Optoelectronics 8, n.º 2 (1 de abril de 2014): 81–87. http://dx.doi.org/10.1049/iet-opt.2013.0068.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Luque, A., A. Marti y L. Cuadra. "Impact-ionization-assisted intermediate band solar cell". IEEE Transactions on Electron Devices 50, n.º 2 (febrero de 2003): 447–54. http://dx.doi.org/10.1109/ted.2003.809024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Tablero, C., P. Palacios, J. J. Fernández y P. Wahnón. "Properties of intermediate band materials". Solar Energy Materials and Solar Cells 87, n.º 1-4 (mayo de 2005): 323–31. http://dx.doi.org/10.1016/j.solmat.2004.06.016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kanoun, Mohammed Benali, Adil Alshoaibi y Souraya Goumri-Said. "Hybrid Density Functional Investigation of Cu Doping Impact on the Electronic Structures and Optical Characteristics of TiO2 for Improved Visible Light Absorption". Materials 15, n.º 16 (17 de agosto de 2022): 5645. http://dx.doi.org/10.3390/ma15165645.

Texto completo
Resumen
We report a theoretical investigation of the influence of Cu doping into TiO2 with various concentrations on crystal structure, stability, electronic structures and optical absorption coefficient using density functional theory via the hybrid formalism based on Heyd Scuseria Ernzerhof. Our findings show that oxygen-rich environments are better for fabricating Cu-doped materials and that the energy of formation for Cu doping at the Ti site is lower than for Cu doping at the O site under these environments. It is found that Cu doping introduces intermediate bands into TiO2, narrowing the band gap. Optical absorption curves show that the Cu-doped TiO2 can successfully harvest visible light. The presence of widely intermediate bands above the valence-band edge could explain the increase in the visible light absorption range. However, the intensity of visible light absorption rises with the increase in doping concentration.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ionova, G. V., Yu N. Kosteubov y A. V. Nikolaev. "Charge ordering in intermediate-band crystals". physica status solidi (b) 134, n.º 1 (1 de marzo de 1986): 239–42. http://dx.doi.org/10.1002/pssb.2221340128.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

López, N., A. Martí, A. Luque, C. Stanley, C. Farmer y P. Diaz. "Experimental Analysis of the Operation of Quantum Dot Intermediate Band Solar Cells". Journal of Solar Energy Engineering 129, n.º 3 (4 de octubre de 2006): 319–22. http://dx.doi.org/10.1115/1.2735344.

Texto completo
Resumen
With a 63.2% theoretical efficiency limit, the intermediate band solar cell (IBSC) is a new photovoltaic device proposed to overcome the 40.7% efficiency limit of conventional single gap solar cells. Quantum dot technology can be used to take the IBSC concept into practice. In this respect, the results of experiments carried out recently to characterize IBSC solar cells containing different numbers of InAs quantum dot layers as well as the theoretical models used to describe and analyze the related experimental data are summarized here. Electroluminescence and quantum efficiency measurements confirm that the main operating conditions for IBSCs are complied with in structures with a low number of QD layers. These conditions include the production of photocurrent from absorption of below band gap energy photons and the formation of distinctive quasi-Fermi levels associated with each electronic band (i.e., the conduction, valence, and intermediate bands).
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Delamarre, Amaury, Daniel Suchet, Nicolas Cavassilas, Yoshitaka Okada, Masakazu Sugiyama y Jean-Francois Guillemoles. "An Electronic Ratchet Is Required in Nanostructured Intermediate-Band Solar Cells". IEEE Journal of Photovoltaics 8, n.º 6 (noviembre de 2018): 1553–59. http://dx.doi.org/10.1109/jphotov.2018.2866186.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Tomić, Stanko, Nicholas M. Harrison y Timothy S. Jones. "Electronic structure of QD arrays: application to intermediate-band solar cells". Optical and Quantum Electronics 40, n.º 5-6 (abril de 2008): 313–18. http://dx.doi.org/10.1007/s11082-008-9228-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Sutrisno, Hari. "Electronic Structure of Vanadium-Doped TiO2 of Both Anatase and Rutile Based on Density Functional Theory (DFT) Approach". ALCHEMY Jurnal Penelitian Kimia 14, n.º 1 (15 de febrero de 2018): 60. http://dx.doi.org/10.20961/alchemy.14.1.11374.60-71.

Texto completo
Resumen
<p>Study of the theoretical approah to calculate the band structure and density of states (DOS) of vanadium-doped TiO<sub>2</sub> of both anatase and rutile have been done. The first-principle calculations were done using supercell (2x1x1) method. The first-principle calculation of V-doped TiO<sub>2</sub> of both anatase and rutile were analyzed by density-functional theory (DFT) with generalized gradient approximation from Perdew-Burke-Ernzerhof (GGA+PBE), Perdew-Wang’s 1991 (GGA+PW91) and local density approximation (LDA) for exchange-correlation functionals. The calculation of electronic structures show that the V-doped TiO<sub>2</sub>-anatase with high concentration (7.93 %) in 24 atoms are direct- and indirect-gap semiconductor, whereas the V-doped TiO<sub>2</sub>-rutile with high concentration (15.79 %) in 12 atoms is direct-gap semiconductor. The V-doped TiO<sub>2</sub> of both anatase and rutile produce the intermediate bands in the upper states. Ihe V-doped anatase produces intermediate band, which is 2.05, 2.04, 2.06 eV above the valence band for GGA+PBE, GGA+PW91 and LDA, respectively. Meanwhile the V-doped rutile producesintermediate band, which is 1.76, 1.82, 1.74 eV above the valence band for GGA+PBE, GGA+PW91 and LDA, respectively.</p>
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Tobías, I., A. Luque y A. Martí. "Numerical modeling of intermediate band solar cells". Semiconductor Science and Technology 26, n.º 1 (9 de diciembre de 2010): 014031. http://dx.doi.org/10.1088/0268-1242/26/1/014031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Li, Ai Yu, Han Xin Shen y Xiao Chun Wang. "Improved Optical and Electronic Properties of Single-Layer MoS<sub>2</sub> by Co Doping for Promising Intermediate - Band Materials". Key Engineering Materials 905 (4 de enero de 2022): 96–102. http://dx.doi.org/10.4028/www.scientific.net/kem.905.96.

Texto completo
Resumen
Owing to its unique optical and electronic characteristics, two-dimensional MoS2 has been widely explored in the past few years. Using first-principle calculations, we shed light on that the substitutional doping of Co can induce the half-filled intermediate states in the band gap of monolayer MoS2. The calculated absorption spectrum presents an enhancement of the low-energy photons (0.8 eV–1.5 eV), which is desired for intermediate-band solar cells. When the doping concentration increases, the reflectivity of the infrared and visible light (0.8 eV-4.0 eV) reduces, resulting in an improved photovoltaic efficiency of the material. Our results shed light on the application of heavily Co-doped MoS2 as intermediate band solar cell material.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Luque, Antonio, Antonio Martí y Arthur J. Nozik. "Solar Cells Based on Quantum Dots: Multiple Exciton Generation and Intermediate Bands". MRS Bulletin 32, n.º 3 (marzo de 2007): 236–41. http://dx.doi.org/10.1557/mrs2007.28.

Texto completo
Resumen
AbstractSemiconductor quantum dots may be used in so-called third-generation solar cells that have the potential to greatly increase the photon conversion efficiency via two effects: (1) the production of multiple excitons from a single photon of sufficient energy and (2) the formation of intermediate bands in the bandgap that use sub-bandgap photons to form separable electron–hole pairs. This is possible because quantization of energy levels in quantum dots produces the following effects: enhanced Auger processes and Coulomb coupling between charge carriers; elimination of the requirement to conserve crystal momentum; slowed hot electron–hole pair (exciton) cooling; multiple exciton generation; and formation of minibands (delocalized electronic states) in quantum dot arrays. For exciton multiplication, very high quantum yields of 300–700% for exciton formation in PbSe, PbS, PbTe, and CdSe quantum dots have been reported at photon energies about 4–8 times the HOMO–LUMO transition energy (quantum dot bandgap), respectively, indicating the formation of 3–7 excitons/photon, depending upon the photon energy. For intermediate-band solar cells, quantum dots are used to create the intermediate bands from the con fined electron states in the conduction band. By means of the intermediate band, it is possible to absorb below-bandgap energy photons. This is predicted to produce solar cells with enhanced photocurrent without voltage degradation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

GORJI, N. E., M. HOUSHMAND y S. S. DEHKORDI. "CONSTRUCTION COMPONENTS ENGINEERING IN INTERMEDIATE BAND SOLAR CELLS". Modern Physics Letters B 26, n.º 14 (14 de mayo de 2012): 1250090. http://dx.doi.org/10.1142/s021798491250090x.

Texto completo
Resumen
The parameter electron filling factor can be taken as a scale for the electronic states in the intermediate band which should be de-localized and thus the unconfined electrons at the quantum dots. For three different value of electron filling factor, the sunlight concentration effect on the efficiency of a quantum dot solar cell is calculated. The maximum point of efficiency and optimum thickness of the cell obtained under three different sunlight concentrations. We show the importance of electron filling factor as a parameter to be more considered. This parameter can be controlled by the quantum dots size and distance between quantum dot layers in the active region. Analysis of above mentioned parameters suggest that to attain a maximum efficiency, the size of the quantum dots and the distance between the periodically arrayed dot layers have to be optimized. In addition, sunlight concentration is recommended as an effective approach to have high efficiency and low cost level solar cells.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Franceschetti, A., S. Lany y G. Bester. "Quantum-dot intermediate-band solar cells with inverted band alignment". Physica E: Low-dimensional Systems and Nanostructures 41, n.º 1 (octubre de 2008): 15–17. http://dx.doi.org/10.1016/j.physe.2008.05.023.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Wilkins, Matthew M., Eduard C. Dumitrescu y Jacob J. Krich. "Material Quality Requirements for Intermediate Band Solar Cells". IEEE Journal of Photovoltaics 10, n.º 2 (marzo de 2020): 467–74. http://dx.doi.org/10.1109/jphotov.2019.2959934.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Lee, Byounghak y Lin-Wang Wang. "Electronic structure of ZnTe:O and its usability for intermediate band solar cell". Applied Physics Letters 96, n.º 7 (15 de febrero de 2010): 071903. http://dx.doi.org/10.1063/1.3298553.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Mondal, Abhay Kumar, Mohd Ambri Mohamed, Loh Kean Ping, Mohamad Fariz Mohamad Taib, Mohd Hazrie Samat, Muhammad Aniq Shazni Mohammad Haniff y Raihana Bahru. "First-Principles Studies for Electronic Structure and Optical Properties of p-Type Calcium Doped α-Ga2O3". Materials 14, n.º 3 (28 de enero de 2021): 604. http://dx.doi.org/10.3390/ma14030604.

Texto completo
Resumen
Gallium oxide (Ga2O3) is a promising wide-band-gap semiconductor material for UV optical detectors and high-power transistor applications. The fabrication of p-type Ga2O3 is a key problem that hinders its potential for realistic power applications. In this paper, pure α-Ga2O3 and Ca-doped α-Ga2O3 band structure, the density of states, charge density distribution, and optical properties were determined by a first-principles generalized gradient approximation plane-wave pseudopotential method based on density functional theory. It was found that calcium (Ca) doping decreases the bandgap by introducing deep acceptor energy levels as the intermediate band above the valence band maximum. This intermediate valence band mainly consists of Ca 3p and O 2p orbitals and is adequately high in energy to provide an opportunity for p-type conductivity. Moreover, Ca doping enhances the absorptivity and reflectivity become low in the visible region. Aside, transparency decreases compared to the pure material. The optical properties were studied and clarified by electrons-photons interband transitions along with the complex dielectric function’s imaginary function.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kürkçü, Cihan. "High-pressure structural phase transitions, electronic properties, and intermediate states of CaSe". Canadian Journal of Physics 97, n.º 7 (julio de 2019): 797–802. http://dx.doi.org/10.1139/cjp-2018-0606.

Texto completo
Resumen
In this study, ab initio calculations have been carried out to understand the effect of extreme external pressure on the crystal structure of CaSe. The crystal structure of CaSe, a calcium chalcogen, is studied using density functional theory (DFT) with the generalized gradient approximation (GGA) up to 250 GPa under high hydrostatic pressure. Structurally CaSe crystallizes in cubic NaCl-type (B1) structure (space group: [Formula: see text]) at ambient conditions. The results indicated that CaSe undergoes a structural phase transition from this cubic structure to another cubic CsCl-type (B2) structure (space group: [Formula: see text]) at high pressure. This transformation is based on two intermediate states with space group [Formula: see text] and C2/m. Additionally, the electronic band structures and density of states for the obtained B1 and B2 structures of CaSe have been calculated. According to these calculations, obtained band gap values are in good agreement with the values reported in the literature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Lichtenstein, A. I., J. Kolorenc, A. B. Shick y M. I. Katsnelson. "Racah Materials: Role of Atomic Multiplets and Intermediate Valence in f-Electron Systems". MRS Advances 1, n.º 44 (2016): 2967–74. http://dx.doi.org/10.1557/adv.2016.358.

Texto completo
Resumen
ABSTRACT The electronic structure of PuB6, an actinide analog of SmB6 , was investigated making use of a combination of the density functional theory (DFT), and the exact diagonalization (ED) of an effective discrete Anderson impurity model. Intermediate valence ground state with the f-shell occupation n4f =5.5 for the Pu atom in PuB6 is calculated. The 5f-shell magnetic moment is completely compensated by the moment carried by the electrons in the conduction band. Already in DFT, PuB6 is an insulator with a small amount of holes near the X-point, and the indirect band gap of ≈60 meV. This band gap becomes direct in DFT+ED calculations supporting the idea of “topological Kondo insulator” in PuB6. Connection between the electronic structure of PuB6 and δ-Pu is established. We propose that these materials belong to a new class of intermediate valence “Racah” materials with the multi-orbital “Kondo-like” singlet ground-state.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Tung, Jen-Chuan, Bang-Wun Lin y Po-Liang Liu. "Intermediate Band Studies of Substitutional V2+, Cr2+, and Mn2+ Defects in ZnTe Alloys". Applied Sciences 10, n.º 24 (15 de diciembre de 2020): 8937. http://dx.doi.org/10.3390/app10248937.

Texto completo
Resumen
We present first-principles total-energy density functional calculations to study the intermediate band states of substitutional V2+, Cr2+, and Mn2+ ions in ZnTe alloys. The intermediate band states of substitutional transition metal defects of TM2+xZn1−xTe (TM = V, Cr, Mn) alloys are examined as their atomic, structural, and electronic analysis. Our findings show that the scissor-corrected transitions due to Jahn-Teller effects lead to the wavelengths 2530 nm and 2695 nm in the emission spectra. Our findings agree with previously reported experimental results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Dumitrescu, Eduard C., Matthew M. Wilkins y Jacob J. Krich. "Simudo: a device model for intermediate band materials". Journal of Computational Electronics 19, n.º 1 (7 de noviembre de 2019): 111–27. http://dx.doi.org/10.1007/s10825-019-01414-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Takeda, Yasuhiko. "Intermediate‐band effect in hot‐carrier solar cells". Progress in Photovoltaics: Research and Applications 27, n.º 6 (27 de marzo de 2019): 528–39. http://dx.doi.org/10.1002/pip.3129.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Luque, Antonio y Antonio Martí. "A metallic intermediate band high efficiency solar cell". Progress in Photovoltaics: Research and Applications 9, n.º 2 (marzo de 2001): 73–86. http://dx.doi.org/10.1002/pip.354.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Okada, Yoshitaka, Katsuhisa Yoshida, Yasushi Shoji y Tomah Sogabe. "Recent progress on quantum dot intermediate band solar cells". IEICE Electronics Express 10, n.º 17 (2013): 20132007. http://dx.doi.org/10.1587/elex.10.20132007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ahsan, Nazmul, Naoya Miyashita, Muhammad Monirul Islam, Kin Man Yu, Wladek Walukiewicz y Yoshitaka Okada. "Effect of Sb on GaNAs Intermediate Band Solar Cells". IEEE Journal of Photovoltaics 3, n.º 2 (abril de 2013): 730–36. http://dx.doi.org/10.1109/jphotov.2012.2228296.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Sullivan, Joseph T., Christie B. Simmons, Tonio Buonassisi y Jacob J. Krich. "Targeted Search for Effective Intermediate Band Solar Cell Materials". IEEE Journal of Photovoltaics 5, n.º 1 (enero de 2015): 212–18. http://dx.doi.org/10.1109/jphotov.2014.2363560.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Sánchez, Kefren, Irene Aguilera, Pablo Palacios y Perla Wahnón. "Active Materials Based on Implanted Si for Obtaining Intermediate Band Solar Cells". Advances in Science and Technology 74 (octubre de 2010): 151–56. http://dx.doi.org/10.4028/www.scientific.net/ast.74.151.

Texto completo
Resumen
First-principles calculations carried out for compounds based on Si implanted with different species, as Ti or chalcogens (S, Se, Te), show them as solid candidates to intermediate band (IB) photovoltaic materials. This DFT study predicts electronic structures, formation energies, relaxed atomic structures, optoelectronic properties, diffusion paths, for supercells containing up to several hundreds of atoms. The knowledge of Si-based devices is a relevant factor to facilitate the creation of an IB solar cell. Crystalline samples with a concentration of Ti several orders of magnitude above the solubility limit have been already grown. Formation energy calculations agree with the experiment in showing mainly interstitial implantation. Calculated electronic structure presents an IB, which is in agreement with electrical measurements and models, and is expected to cause an increase of the absorption coefficient across the solar spectrum. Chalcogen-implanted Si is an efficient IR absorber when implantation is carried out at ultra-high concentrations. Substitutional implantation produces a filled band inside Si band-gap and our calculations predict that plausible co-doping with IIIA atoms (as Al, B) would allow to obtain an IB fulfilling all the needed requirements.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Fuertes Marrón, D., A. Martí y A. Luque. "Thin-film intermediate band chalcopyrite solar cells". Thin Solid Films 517, n.º 7 (febrero de 2009): 2452–54. http://dx.doi.org/10.1016/j.tsf.2008.11.030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Tablero, C. "Correlation effects and electronic properties of Cr-substituted SZn with an intermediate band". Journal of Chemical Physics 123, n.º 11 (15 de septiembre de 2005): 114709. http://dx.doi.org/10.1063/1.2034447.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Cavassilas, Nicolas, Daniel Suchet, Amaury Delamarre, Fabienne Michelini, Marc Bescond, Yoshitaka Okada, Masakazu Sugiyama y Jean-Francois Guillemoles. "Beneficial impact of a thin tunnel barrier in quantum well intermediate-band solar cell". EPJ Photovoltaics 9 (2018): 11. http://dx.doi.org/10.1051/epjpv/2018009.

Texto completo
Resumen
Based on electronic quantum transport modeling, we study the transition between the intermediate-band and the conduction-band in nano-structured intermediate-band solar cell. We show that a tunnel barrier between the quantum well (QW) and the host material could improve the current. The confinement generated by such a barrier favors the inter-subband optical coupling in the QW and then changes the excitation-collection trade-off. More surprisingly, we also show that tunneling impacts the radiative recombination and then the voltage. Using a detailed balance model we explain and we propose a broadening factor for this Voc modification. Finally we show that a thin tunnel barrier is beneficial for both current and voltage.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Zhao, Huaisong, Jiasheng Qian, Sheng Xu y Feng Yuan. "The electronic structure and spin-charge separation of one-dimensional SrCuO2". Modern Physics Letters B 33, n.º 02 (20 de enero de 2019): 1950006. http://dx.doi.org/10.1142/s0217984919500064.

Texto completo
Resumen
Based on the t-J model and slave-boson theory, we have studied the electronic structure in one-dimensional SrCuO2 by calculating the electron spectrum. Our results show that the electron spectra are mainly composed of three parts in one-dimensional SrCuO2, a sharp low-energy peak, a broad intermediate-energy peak and a high-energy peak. The sharp low-energy peak corresponds to the main band (MB) while the broad intermediate-energy peak and high-energy peak are associated with the shadow band (SB) and high-energy band (HB), respectively. From low-energy to intermediate-energy region, a clear two-peak structure (MB and SB) around the momentum [Formula: see text] appears, and the distance between two peaks decreases along the momentum direction from [Formula: see text] to [Formula: see text], then disappears at the critical momentum point [Formula: see text], leaving a single peak above [Formula: see text]. The electron spectral function in one-dimensional SrCuO2 is also the doping and temperature dependent. In particular, in the very low doping concentration, the HB merges into the MB. However, with the increases of the doping concentration, the HB separates from the MB and moves quickly to the high-binding energy region. The HB and MB are the direct results of the spin-charge separation while SB is the result of strong interaction between charge and spin parts. Therefore, our theoretical result predicts that the HB is more likely to be found at the low doping concentration, and it will be drowned in the background when the doping concentration is larger. Then with the temperature increases, the magnitude of the SB decreases, and it disappears at high temperature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Nasr, A. y Abou El-Maaty M. Aly. "Performance Evaluation of Quantum-Dot Intermediate-Band Solar Cells". Journal of Electronic Materials 45, n.º 1 (16 de noviembre de 2015): 672–81. http://dx.doi.org/10.1007/s11664-015-4172-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

He, Hao, Wei Li, Huai Zhong Xing y Er Jun Liang. "First Principles Study on the Electronic Properties of Cr, Fe, Mn and Ni Doped β-Ga2O3". Advanced Materials Research 535-537 (junio de 2012): 36–41. http://dx.doi.org/10.4028/www.scientific.net/amr.535-537.36.

Texto completo
Resumen
The electronic band structures, partial and total spin density of states of Cr, Fe, Mn and Ni doped β-Ga2O3 are studied. It is shown that there exists only one spin polarized state around the Fermi level for all doped β-Ga2O3. Ferromagnetism is predicted for Mn and Ni doped while spin-glass ground states are predicted for Cr and Fe doped β-Ga2O3. All doped β-Ga2O3 exhibits intermediate bands which are filled with only one spin state electrons and isolated from valence and conduction bands due to the splitting of the 3d orbitals by the potential of crystal and spin interaction
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Wang, Zhenzhen, Xiaomei Shen, Xingfa Gao y Yuliang Zhao. "Simultaneous enzyme mimicking and chemical reduction mechanisms for nanoceria as a bio-antioxidant: a catalytic model bridging computations and experiments for nanozymes". Nanoscale 11, n.º 28 (2019): 13289–99. http://dx.doi.org/10.1039/c9nr03473k.

Texto completo
Resumen
The newly created surface defect states in the electronic band structures of the shortly-lived intermediate species, called transient surface defect states, bridge between computations and experiments at the atomistic level for nanozymes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Chen, Kuo-Feng, Chien-Lun Hung y Yao-Lung Tsai. "Simulation study of InGaN intermediate-band solar cells". Journal of Physics D: Applied Physics 49, n.º 48 (3 de noviembre de 2016): 485102. http://dx.doi.org/10.1088/0022-3727/49/48/485102.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Meng, Xiangrui, Zhimin Zhang, Wei Wang, Chuanzhao Han, Zhen Chen, Jinsong Qiu y Yuhao Wen. "Demonstration of Intermediate Frequency Digital Beamforming With X-Band and C-Band DBF-SARs". IEEE Geoscience and Remote Sensing Letters 19 (2022): 1–5. http://dx.doi.org/10.1109/lgrs.2022.3148360.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Wang, Tingting, Xiaoguang Li, Wenjie Li, Li Huang, Cencen Ma, Ya Cheng, Jun Cui, Hailin Luo, Guohua Zhong y Chunlei Yang. "Transition metals doped CuAlSe2for promising intermediate band materials". Materials Research Express 3, n.º 4 (26 de abril de 2016): 045905. http://dx.doi.org/10.1088/2053-1591/3/4/045905.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Cuadra, L., A. Martı́ y A. Luque. "Present status of intermediate band solar cell research". Thin Solid Films 451-452 (marzo de 2004): 593–99. http://dx.doi.org/10.1016/j.tsf.2003.11.047.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Wang, Weiming, Jun Yang, Xin Zhu y Jamie Phillips. "Intermediate-band solar cells based on dilute alloys and quantum dots". Frontiers of Optoelectronics in China 4, n.º 1 (marzo de 2011): 2–11. http://dx.doi.org/10.1007/s12200-011-0151-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

QIU, BO, XIN-GUO YAN, WEI-QING HUANG, GUI-FANG HUANG, CHAO JIAO, SI-QI ZHAN, JIN-PING LONG, ZHENG-MEI YANG, ZHUO WAN y P. PENG. "THE ELECTRONIC AND OPTICAL PROPERTIES OF X-DOPED SrTiO3 (X = Rh, Pd, Ag): A FIRST-PRINCIPLES CALCULATIONS". International Journal of Modern Physics B 28, n.º 09 (5 de marzo de 2014): 1450031. http://dx.doi.org/10.1142/s0217979214500313.

Texto completo
Resumen
The electronic and optical properties of X-doped (X = Rh, Pd, Ag) cubic SrTiO 3 in perovskite structure are investigated using first-principles calculations. The strength of the Ti–O bonds near the substitutional X impurity is found to be weakened by the shorter X–O bonds. Three types of electronic characteristics due to X-doping are demonstrated. X-doping decreases the band gap of SrTiO 3, extending the optical absorption edge to visible light. Although Pd-doped SrTiO 3 has the greatest absorption in the visible light region, its photocatalytic activity is lower than that of Rh-doped SrTiO 3, because the intermediate bands from the 4d orbitals of the Pd dopant act as recombination centers. The theoretical results coincide with the available experimental results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Liu, Bin, Wan-Sheng Su y Bi-Ru Wu. "Influence of Group-IVA Doping on Electronic and Optical Properties of ZnS Monolayer: A First-Principles Study". Nanomaterials 12, n.º 21 (4 de noviembre de 2022): 3898. http://dx.doi.org/10.3390/nano12213898.

Texto completo
Resumen
Element doping is a universal way to improve the electronic and optical properties of two-dimensional (2D) materials. Here, we investigate the influence of group−ⅣA element (C, Si, Ge, Sn, and Pb) doping on the electronic and optical properties of the ZnS monolayer with a tetragonal phase by using first-principles calculations. The results indicate that the doping atoms tend to form tetrahedral structures with neighboring S atoms. In these doped models, the formation energies are all negative, indicating that the formation processes of the doped models will release energy. The formation energy is smallest for C−doped ZnS and gradually increases with the metallicity of the doping element. The doped ZnS monolayer retains a direct band gap, with this band gap changing little in other element doping cases. Moreover, intermediate states are observed that are induced by the sp3 hybridization from the doping atoms and S atoms. Such intermediate states expand the optical absorption range into the visible spectrum. Our findings provide an in-depth understanding of the electronic and optical properties of the ZnS monolayer and the associated doping structures, which is helpful for application in optoelectronic devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Guo, Jian, Cheng Qian, Jie Xu y Zhenhua Chen. "W band single diode fundamental mixer with high intermediate frequency". Microwave and Optical Technology Letters 60, n.º 9 (11 de agosto de 2018): 2191–93. http://dx.doi.org/10.1002/mop.31316.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Linares, P. G., A. Martí, E. Antolín, I. Ramiro, Esther López, C. D. Farmer, C. R. Stanley y A. Luque. "Low-Temperature Concentrated Light Characterization Applied to Intermediate Band Solar Cells". IEEE Journal of Photovoltaics 3, n.º 2 (abril de 2013): 753–61. http://dx.doi.org/10.1109/jphotov.2013.2241395.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Ahsan, Nazmul, Naoya Miyashita, Kin Man Yu, Wladek Walukiewicz y Yoshitaka Okada. "Electron Barrier Engineering in a Thin-Film Intermediate-Band Solar Cell". IEEE Journal of Photovoltaics 5, n.º 3 (mayo de 2015): 878–84. http://dx.doi.org/10.1109/jphotov.2015.2412451.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Chandra, A., Y. Huang, Z. Q. Jiang, K. X. Hu y G. Fu. "A Model of Crack Nucleation in Layered Electronic Assemblies Under Thermal Cycling". Journal of Electronic Packaging 122, n.º 3 (5 de noviembre de 1999): 220–26. http://dx.doi.org/10.1115/1.1286100.

Texto completo
Resumen
A model for crack nucleation in layered electronic assemblies under thermal cycling is developed in this paper. The present model includes three scales: (i) at the microscale or the mechanism level, the damage mechanisms such as diffusive void growth or fatigue cracks, determine the damage growth rate; (2) at an intermediate mesoscale, the localized damage bands are modeled as variable stiffness springs connecting undamaged materials; and (iii) at the macroscale or the continuum level, the localized damage band growing in an otherwise undamaged material is modeled as an array of dislocations. The three scales are then combined together to incorporate damage mechanisms into continuum analysis. Traditional fracture mechanics provides a crack propagation model based on pre-existing cracks. The present work provides an approach for predicting crack nucleation. The proposed model is then utilized to investigate crack nucleations in three-layered electronic assemblies under thermal cycling. The damage is observed to accumulate rapidly in the weakest regions of the band. Estimates are obtained for critical time or critical number of cycles at which a macroscopic crack will nucleate in these assemblies under thermal cycling. This critical number of cycles is found to be insensitive to the size of the damage cluster, but decreases rapidly as the local excess damage increases. [S1043-7398(00)00503-X]
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Xu, Dongcun, Gang Fu, Zhongming Li, Wenqing Zhen, Hongyi Wang, Meiling Liu, Jianmin Sun, Jiaxu Zhang y Li Yang. "Functional Regulation of ZnAl-LDHs and Mechanism of Photocatalytic Reduction of CO2: A DFT Study". Molecules 28, n.º 2 (11 de enero de 2023): 738. http://dx.doi.org/10.3390/molecules28020738.

Texto completo
Resumen
Defect engineering and heteroatom doping can significantly enhance the activity of zinc-aluminum layered double hydroxides (ZnAl-LDHs) in photocatalytic CO2 reduction to fuel. However, the in-depth understanding of the associated intrinsic mechanisms is limited. Herein, we systematically investigated Zn vacancies (VZn), oxygen vacancies (VO), and Cu doping on the geometry and electronic structure of ZnAl-LDH using density functional theory (DFT). We also revealed the related reaction mechanism. The results reveal the concerted roles of VO, VZn, and doped-Cu facilitate the formation of the unsaturated metal complexes (Znδ+-VO and Cuδ+-VO). They can localize the charge density distribution, function as new active centers, and form the intermediate band. Simultaneously, the intermediate band of functionalized ZnAl-LDHs narrows the band gap and lowers the band edge location. Therefore, it can broaden the absorption range of light and improve the selectivity of CO. Additionally, the unsaturated metal complex lowers the Gibbs free energy barrier for effective CO2 activation by bringing the d-band center level closer to the Fermi level. The work provided guidance for developing LDH photocatalysts with high activity and selectivity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Tablero, C. "Optical properties for Ga32P31Cr and Ga31P32Cr intermediate band materials". Solar Energy Materials and Solar Cells 90, n.º 2 (enero de 2006): 203–12. http://dx.doi.org/10.1016/j.solmat.2005.03.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía