Artículos de revistas sobre el tema "Interactive molecular simulations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Interactive molecular simulations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Rapaport, D. C. y Harvey Gould. "An introduction to interactive molecular-dynamics simulations". Computers in Physics 11, n.º 4 (1997): 337. http://dx.doi.org/10.1063/1.168612.
Texto completoLanrezac, André, Benoist Laurent, Hubert Santuz, Nicolas Férey y Marc Baaden. "Fast and Interactive Positioning of Proteins within Membranes". Algorithms 15, n.º 11 (7 de noviembre de 2022): 415. http://dx.doi.org/10.3390/a15110415.
Texto completoDelalande, Olivier, Nicolas Férey, Gilles Grasseau y Marc Baaden. "Complex molecular assemblies at hand via interactive simulations". Journal of Computational Chemistry 30, n.º 15 (30 de noviembre de 2009): 2375–87. http://dx.doi.org/10.1002/jcc.21235.
Texto completoLahlali, Abdelouahed, Nadia Chafiq, Mohamed Radid, Kamal Moundy y Chaibia Srour. "The Effect of Integrating Interactive Simulations on the Development of Students’ Motivation, Engagement, Interaction and School Results". International Journal of Emerging Technologies in Learning (iJET) 18, n.º 12 (21 de junio de 2023): 193–207. http://dx.doi.org/10.3991/ijet.v18i12.39755.
Texto completoDunn, Justin y Umesh Ramnarain. "The Effect of Simulation-Supported Inquiry on South African Natural Sciences Learners’ Understanding of Atomic and Molecular Structures". Education Sciences 10, n.º 10 (14 de octubre de 2020): 280. http://dx.doi.org/10.3390/educsci10100280.
Texto completoGoret, G., B. Aoun y E. Pellegrini. "MDANSE: An Interactive Analysis Environment for Molecular Dynamics Simulations". Journal of Chemical Information and Modeling 57, n.º 1 (6 de enero de 2017): 1–5. http://dx.doi.org/10.1021/acs.jcim.6b00571.
Texto completoWhite, Brian T. y Ethan D. Bolker. "Interactive computer simulations of genetics, biochemistry, and molecular biology". Biochemistry and Molecular Biology Education 36, n.º 1 (enero de 2008): 77–84. http://dx.doi.org/10.1002/bmb.20152.
Texto completoSego, T. J., James P. Sluka, Herbert M. Sauro y James A. Glazier. "Tissue Forge: Interactive biological and biophysics simulation environment". PLOS Computational Biology 19, n.º 10 (23 de octubre de 2023): e1010768. http://dx.doi.org/10.1371/journal.pcbi.1010768.
Texto completoCruz-neira, C., R. Langley y P. A. Bash. "Interactive Molecular Modeling with Virtual Reality and Empirical Energy Simulations". SAR and QSAR in Environmental Research 9, n.º 1-2 (enero de 1998): 39–51. http://dx.doi.org/10.1080/10629369808039148.
Texto completoMcCluskey, Andrew R., James Grant, Adam R. Symington, Tim Snow, James Doutch, Benjamin J. Morgan, Stephen C. Parker y Karen J. Edler. "An introduction to classical molecular dynamics simulation for experimental scattering users". Journal of Applied Crystallography 52, n.º 3 (7 de mayo de 2019): 665–68. http://dx.doi.org/10.1107/s1600576719004333.
Texto completoGlowacki, David R., Michael O'Connor, Gaetano Calabró, James Price, Philip Tew, Thomas Mitchell, Joseph Hyde, David P. Tew, David J. Coughtrie y Simon McIntosh-Smith. "A GPU-accelerated immersive audio-visual framework for interaction with molecular dynamics using consumer depth sensors". Faraday Discuss. 169 (2014): 63–87. http://dx.doi.org/10.1039/c4fd00008k.
Texto completoAstsatryan, Hrachya, Wahi Narsisian, Eliza Gyulgyulyan, Vardan Baghdasaryan, Armen Poghosyan, Yevgeni Mamasakhlisov y Peter Wittenburg. "An Integrated Web-based Interactive Data Platform for Molecular Dynamics Simulations". Scalable Computing: Practice and Experience 19, n.º 2 (10 de mayo de 2018): 131–38. http://dx.doi.org/10.12694/scpe.v19i2.1337.
Texto completoByška, J., T. Trautner, S. M. Marques, J. Damborský, B. Kozlíková y M. Waldner. "Analysis of Long Molecular Dynamics Simulations Using Interactive Focus+Context Visualization". Computer Graphics Forum 38, n.º 3 (junio de 2019): 441–53. http://dx.doi.org/10.1111/cgf.13701.
Texto completoWhitworth, Karen, Sarah Leupen, Chistopher Rakes y Mauricio Bustos. "Interactive Computer Simulations as Pedagogical Tools in Biology Labs". CBE—Life Sciences Education 17, n.º 3 (septiembre de 2018): ar46. http://dx.doi.org/10.1187/cbe.17-09-0208.
Texto completoDreher, Matthieu, Jessica Prevoteau-Jonquet, Mikael Trellet, Marc Piuzzi, Marc Baaden, Bruno Raffin, Nicolas Ferey, Sophie Robert y Sébastien Limet. "ExaViz: a flexible framework to analyse, steer and interact with molecular dynamics simulations". Faraday Discuss. 169 (2014): 119–42. http://dx.doi.org/10.1039/c3fd00142c.
Texto completoPoppleton, Erik, Roger Romero, Aatmik Mallya, Lorenzo Rovigatti y Petr Šulc. "OxDNA.org: a public webserver for coarse-grained simulations of DNA and RNA nanostructures". Nucleic Acids Research 49, W1 (1 de mayo de 2021): W491—W498. http://dx.doi.org/10.1093/nar/gkab324.
Texto completoColubri, Andrés, Molly Kemball, Kian Sani, Chloe Boehm, Karen Mutch-Jones, Ben Fry, Todd Brown y Pardis C. Sabeti. "Preventing Outbreaks through Interactive, Experiential Real-Life Simulations". Cell 182, n.º 6 (septiembre de 2020): 1366–71. http://dx.doi.org/10.1016/j.cell.2020.08.042.
Texto completoROBLES, MIGUEL, VILLE MUSTONEN y KIMMO KASKI. "MOLECULAR DYNAMIC STUDY OF A SINGLE DISLOCATION IN A TWO-DIMENSIONAL LENNARD–JONES SYSTEM". International Journal of Modern Physics C 14, n.º 04 (mayo de 2003): 407–21. http://dx.doi.org/10.1142/s0129183103004620.
Texto completoPandi, Sangavi, Langeswaran Kulanthaivel, Gowtham Kumar Subbaraj, Sangeetha Rajaram y Senthilkumar Subramanian. "Screening of Potential Breast Cancer Inhibitors through Molecular Docking and Molecular Dynamics Simulation". BioMed Research International 2022 (28 de junio de 2022): 1–9. http://dx.doi.org/10.1155/2022/3338549.
Texto completoDubois, Marc-André, Xavier Bouju y Alain Rochefort. "Toward interactive scanning tunneling microscopy simulations of large-scale molecular systems in real time". Journal of Applied Physics 124, n.º 4 (28 de julio de 2018): 044301. http://dx.doi.org/10.1063/1.5037443.
Texto completoMarforio, Tainah Dorina, Alessandro Calza, Edoardo Jun Mattioli, Francesco Zerbetto y Matteo Calvaresi. "Dissecting the Supramolecular Dispersion of Fullerenes by Proteins/Peptides: Amino Acid Ranking and Driving Forces for Binding to C60". International Journal of Molecular Sciences 22, n.º 21 (26 de octubre de 2021): 11567. http://dx.doi.org/10.3390/ijms222111567.
Texto completoGauthier, Andrea. "Game and Simulation Stimulate Conceptual Change about Molecular Emergence in Different Ways, with Potential Cultural Implications". Education Sciences 14, n.º 4 (31 de marzo de 2024): 366. http://dx.doi.org/10.3390/educsci14040366.
Texto completoYang, Jiantao y Tairen Sun. "Finite-Time Interactive Control of Robots with Multiple Interaction Modes". Sensors 22, n.º 10 (11 de mayo de 2022): 3668. http://dx.doi.org/10.3390/s22103668.
Texto completoTorrens-Fontanals, Mariona, Alejandro Peralta-García, Carmine Talarico, Ramon Guixà-González, Toni Giorgino y Jana Selent. "SCoV2-MD: a database for the dynamics of the SARS-CoV-2 proteome and variant impact predictions". Nucleic Acids Research 50, n.º D1 (11 de noviembre de 2021): D858—D866. http://dx.doi.org/10.1093/nar/gkab977.
Texto completoSellis, Diamantis, Dimitrios Vlachakis y Metaxia Vlassi. "Gromita: A Fully Integrated Graphical user Interface to Gromacs 4". Bioinformatics and Biology Insights 3 (enero de 2009): BBI.S3207. http://dx.doi.org/10.4137/bbi.s3207.
Texto completoAbdi, Sayed Aliul Hasan, Amena Ali, Shabihul Fatma Sayed, Mohamed Jawed Ahsan, Abu Tahir, Wasim Ahmad, Shatrunajay Shukla y Abuzer Ali. "Morusflavone, a New Therapeutic Candidate for Prostate Cancer by CYP17A1 Inhibition: Exhibited by Molecular Docking and Dynamics Simulation". Plants 10, n.º 9 (14 de septiembre de 2021): 1912. http://dx.doi.org/10.3390/plants10091912.
Texto completoLoya, Adil, Antash Najib, Fahad Aziz, Asif Khan, Guogang Ren y Kun Luo. "Comparative molecular dynamics simulations of thermal conductivities of aqueous and hydrocarbon nanofluids". Beilstein Journal of Nanotechnology 13 (7 de julio de 2022): 620–28. http://dx.doi.org/10.3762/bjnano.13.54.
Texto completoAllain, Ariane, Isaure Chauvot de Beauchêne, Florent Langenfeld, Yann Guarracino, Elodie Laine y Luba Tchertanov. "Allosteric pathway identification through network analysis: from molecular dynamics simulations to interactive 2D and 3D graphs". Faraday Discuss. 169 (2014): 303–21. http://dx.doi.org/10.1039/c4fd00024b.
Texto completoClarke, Kenneth A. "Microcomputer Simulations of Mechanical Properties of Skeletal Muscle for Undergraduate Classes". Alternatives to Laboratory Animals 15, n.º 3 (marzo de 1988): 183–87. http://dx.doi.org/10.1177/026119298801500303.
Texto completoMolza, A. E., N. Férey, M. Czjzek, E. Le Rumeur, J. F. Hubert, A. Tek, B. Laurent, M. Baaden y O. Delalande. "Innovative interactive flexible docking method for multi-scale reconstruction elucidates dystrophin molecular assembly". Faraday Discuss. 169 (2014): 45–62. http://dx.doi.org/10.1039/c3fd00134b.
Texto completoNakano, Aiichiro, Rajiv K. Kalia, Priya Vashishta, Timothy J. Campbell, Shuji Ogata, Fuyuki Shimojo y Subhash Saini. "Scalable Atomistic Simulation Algorithms for Materials Research". Scientific Programming 10, n.º 4 (2002): 263–70. http://dx.doi.org/10.1155/2002/203525.
Texto completoHokkanen, J. E. "Visual simulations, artificial animals and virtual ecosystems". Journal of Experimental Biology 202, n.º 23 (1 de diciembre de 1999): 3477–84. http://dx.doi.org/10.1242/jeb.202.23.3477.
Texto completoRusu, Victor H., Denys E. S. Santos, Marcelo D. Poleto, Marcelo M. Galheigo, Antônio T. A. Gomes, Hugo Verli, Thereza A. Soares y Roberto D. Lins. "Rotational Profiler: A Fast, Automated, and Interactive Server to Derive Torsional Dihedral Potentials for Classical Molecular Simulations". Journal of Chemical Information and Modeling 60, n.º 12 (19 de noviembre de 2020): 5923–27. http://dx.doi.org/10.1021/acs.jcim.0c01168.
Texto completoErtl, Thomas, Michael Krone, Stefan Kesselheim, Katrin Scharnowski, Guido Reina y Christian Holm. "Visual analysis for space–time aggregation of biomolecular simulations". Faraday Discuss. 169 (2014): 167–78. http://dx.doi.org/10.1039/c3fd00156c.
Texto completoStone, John E., Ryan McGreevy, Barry Isralewitz y Klaus Schulten. "GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting". Faraday Discuss. 169 (2014): 265–83. http://dx.doi.org/10.1039/c4fd00005f.
Texto completoDewhurst, David G., Guy J. Brown y Anthony S. Meehan. "Microcomputer Simulations of Laboratory Experiments in Physiology". Alternatives to Laboratory Animals 15, n.º 4 (junio de 1988): 280–89. http://dx.doi.org/10.1177/026119298801500403.
Texto completoWoods, Christopher J., Maturos Malaisree, Julien Michel, Ben Long, Simon McIntosh-Smith y Adrian J. Mulholland. "Rapid decomposition and visualisation of protein–ligand binding free energies by residue and by water". Faraday Discuss. 169 (2014): 477–99. http://dx.doi.org/10.1039/c3fd00125c.
Texto completoZou, Rui, Yubin Liu, Jie Zhao y Hegao Cai. "A Framework for Human-Robot-Human Physical Interaction Based on N-Player Game Theory". Sensors 20, n.º 17 (3 de septiembre de 2020): 5005. http://dx.doi.org/10.3390/s20175005.
Texto completoZhang, Yuqi, Li Chen, Xiaoyu Wang, Yanyan Zhu, Yongsheng Liu, Huiyu Li y Qingjie Zhao. "Interactive Mechanism of Potential Inhibitors with Glycosyl for SARS-CoV-2 by Molecular Dynamics Simulation". Processes 9, n.º 10 (29 de septiembre de 2021): 1749. http://dx.doi.org/10.3390/pr9101749.
Texto completoJungck, John R., Holly Gaff y Anton E. Weisstein. "Mathematical Manipulative Models: In Defense of “Beanbag Biology”". CBE—Life Sciences Education 9, n.º 3 (septiembre de 2010): 201–11. http://dx.doi.org/10.1187/cbe.10-03-0040.
Texto completoStevens, Ron, David F. Johnson y Amy Soller. "Probabilities and Predictions: Modeling the Development of Scientific Problem-Solving Skills". Cell Biology Education 4, n.º 1 (marzo de 2005): 42–57. http://dx.doi.org/10.1187/cbe.04-03-0036.
Texto completoTieleman, D. P., B. I. Sejdiu, E. A. Cino, P. Smith, E. Barreto-Ojeda, H. M. Khan y V. Corradi. "Insights into lipid-protein interactions from computer simulations". Biophysical Reviews 13, n.º 6 (3 de noviembre de 2021): 1019–27. http://dx.doi.org/10.1007/s12551-021-00876-9.
Texto completoYang, Peng, Peng Liu y Junmao Li. "The Regulatory Network of Gastric Cancer Pathogenesis and Its Potential Therapeutic Active Ingredients of Traditional Chinese Medicine Based on Bioinformatics, Molecular Docking, and Molecular Dynamics Simulation". Evidence-Based Complementary and Alternative Medicine 2022 (26 de noviembre de 2022): 1–17. http://dx.doi.org/10.1155/2022/5005498.
Texto completoLoftus, Neil y Husnu S. Narman. "Use of Machine Learning in Interactive Cybersecurity and Network Education". Sensors 23, n.º 6 (9 de marzo de 2023): 2977. http://dx.doi.org/10.3390/s23062977.
Texto completoBrown, Guy J., Godfrey G. S. Collins, David G. Dewhurst y Ian E. Hughes. "Computer Simulations in Teaching Neuromuscular Pharmacology—Time for a Change from Traditional Methods?" Alternatives to Laboratory Animals 16, n.º 2 (diciembre de 1988): 163–74. http://dx.doi.org/10.1177/026119298801600207.
Texto completoChakrabarty, Broto, Varun Naganathan, Kanak Garg, Yash Agarwal y Nita Parekh. "NAPS update: network analysis of molecular dynamics data and protein–nucleic acid complexes". Nucleic Acids Research 47, W1 (20 de mayo de 2019): W462—W470. http://dx.doi.org/10.1093/nar/gkz399.
Texto completoZou, Yu, Zhiwei Liu, Zhiqiang Zhu y Zhenyu Qian. "Structural Influence and Interactive Binding Behavior of Dopamine and Norepinephrine on the Greek-Key-Like Core of α-Synuclein Protofibril Revealed by Molecular Dynamics Simulations". Processes 7, n.º 11 (13 de noviembre de 2019): 850. http://dx.doi.org/10.3390/pr7110850.
Texto completoByregowda, Bharath Harohalli, Krishnaprasad Baby, Swastika Maity, Usha Yogendra Nayak, Gayathri S, Shaik Mohammad Fayaz y Yogendra Nayak. "Network pharmacology and in silico approaches to uncover multitargeted mechanism of action of Zingiber zerumbet rhizomes for the treatment of idiopathic pulmonary fibrosis". F1000Research 13 (22 de marzo de 2024): 216. http://dx.doi.org/10.12688/f1000research.142513.1.
Texto completoPavlov, Evgen, Makoto Taiji, Arturs Scukins, Anton Markesteijn, Sergey Karabasov y Dmitry Nerukh. "Visualising and controlling the flow in biomolecular systems at and between multiple scales: from atoms to hydrodynamics at different locations in time and space". Faraday Discuss. 169 (2014): 285–302. http://dx.doi.org/10.1039/c3fd00159h.
Texto completoPark, Chailim y Heewon Kye. "Efficient Massive Computing for Deformable Volume Data Using Revised Parallel Resampling". Sensors 22, n.º 16 (20 de agosto de 2022): 6276. http://dx.doi.org/10.3390/s22166276.
Texto completo