Literatura académica sobre el tema "Inter-modal Registration"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Inter-modal Registration".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Inter-modal Registration"
Wang, Chengjia, Guang Yang y Giorgos Papanastasiou. "Unsupervised Image Registration towards Enhancing Performance and Explainability in Cardiac and Brain Image Analysis". Sensors 22, n.º 6 (9 de marzo de 2022): 2125. http://dx.doi.org/10.3390/s22062125.
Texto completoCopson, Bridget, Sudanthi Wijewickrema, Christopher Slinger, Daniel Youssef, Jean-Marc Gerard y Stephen O’Leary. "Definition of a coordinate system for multi-modal images of the temporal bone and inner ear". PLOS ONE 19, n.º 10 (7 de octubre de 2024): e0294828. http://dx.doi.org/10.1371/journal.pone.0294828.
Texto completoWest, Malcolm, Andrew Bates, Chloe Grimmett, Cait Allen, Richard Green, Lesley Hawkins, Helen Moyses et al. "The Wessex Fit-4-Cancer Surgery Trial (WesFit): a protocol for a factorial-design, pragmatic randomised-controlled trial investigating the effects of a multi-modal prehabilitation programme in patients undergoing elective major intra–cavity cancer surgery". F1000Research 10 (2 de agosto de 2022): 952. http://dx.doi.org/10.12688/f1000research.55324.2.
Texto completoWest, Malcolm, Andrew Bates, Chloe Grimmett, Cait Allen, Richard Green, Lesley Hawkins, Helen Moyses et al. "The Wessex Fit-4-Cancer Surgery Trial (WesFit): a protocol for a factorial-design, pragmatic randomised-controlled trial investigating the effects of a multi-modal prehabilitation programme in patients undergoing elective major intra–cavity cancer surgery". F1000Research 10 (21 de septiembre de 2021): 952. http://dx.doi.org/10.12688/f1000research.55324.1.
Texto completoMasoumi, Nima, Hassan Rivaz, M. Omair Ahmad y Yiming Xiao. "DiffeoRaptor: diffeomorphic inter-modal image registration using RaPTOR". International Journal of Computer Assisted Radiology and Surgery, 29 de septiembre de 2022. http://dx.doi.org/10.1007/s11548-022-02749-2.
Texto completoIommi, David, Alejandra Valladares, Michael Figl, Marko Grahovac, Gabor Fichtinger y Johann Hummel. "3D ultrasound guided navigation system with hybrid image fusion". Scientific Reports 11, n.º 1 (23 de abril de 2021). http://dx.doi.org/10.1038/s41598-021-86848-1.
Texto completoHu, Xin, Yan Wu, Xingyu Liu, Zhikang Li, Zhifei Yang y Ming Li. "Intra- and Inter-Modal Graph Attention Network and Contrastive Learning for SAR and Optical Image Registration". IEEE Transactions on Geoscience and Remote Sensing, 2023, 1. http://dx.doi.org/10.1109/tgrs.2023.3328368.
Texto completoAlley, Stephanie, Edward Jackson, Damien Olivié, Uulke A. van der Heide, Cynthia Ménard y Samuel Kadoury. "Effect of magnetic resonance imaging pre-processing on the performance of model-based prostate tumor probability mapping". Physics in Medicine & Biology, 12 de octubre de 2022. http://dx.doi.org/10.1088/1361-6560/ac99b4.
Texto completoTesis sobre el tema "Inter-modal Registration"
Ndzimbong, William Brice. "Recalage automatique des images echographiques tridimensionnelles et tomodensitométriques du rein". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD047.
Texto completoAutomatic registration between abdominal ultrasound (US) and computed tomography (CT) images is needed to enhance interventional guidance in kidney surgery. However, it remains an open research challenge. One striking limitation is the lack of public datasets that comprise images of the same patient in both modalities (paired datasets). This has hindered methodological progress, as well as prevented a systematic comparison of state-of-the-art methods. Another limitation is the lack of robust methods capable of solving registration without manual initialization (’global’ methods). This thesis aims to overcome these challenges with several research contributions. The first contribution is a novel dataset with paired transabdominal 3D US and CT kidney images from 48 human patients that includes segmentation and anatomical landmark annotations from two expert radiographers. In addition to the dataset, annotation consistency is analyzed, and its value assessed by benchmarking methods that tackle two fundamental tasks : automatic kidney segmentation and inter-modal image registration. The findings show that both challenges are still open, and the dataset should serve as an important resource for advancing both topics. As a second main contribution, an automatic method for global registration of kidneys in 3D US and CT images is proposed. This method handles registration ambiguity caused by the organ’s natural symmetry. Combined with a registration refinement algorithm, it achieves robust and accurate kidney registration while avoiding manual initialization. The method has several other important applications, including inter-modal image translation and image synthesis, as well as label transfer between modalities
Capítulos de libros sobre el tema "Inter-modal Registration"
Salari, Soorena, Amirhossein Rasoulian, Hassan Rivaz y Yiming Xiao. "FocalErrorNet: Uncertainty-Aware Focal Modulation Network for Inter-modal Registration Error Estimation in Ultrasound-Guided Neurosurgery". En Lecture Notes in Computer Science, 689–98. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-43996-4_66.
Texto completoActas de conferencias sobre el tema "Inter-modal Registration"
Li, Xia, Thomas E. Yankeelov, Glenn Rosen, John C. Gore y Benoit M. Dawant. "Multi-modal inter-subject registration of mouse brain images". En Medical Imaging, editado por Joseph M. Reinhardt y Josien P. W. Pluim. SPIE, 2006. http://dx.doi.org/10.1117/12.652407.
Texto completoChappelow, Jonathan, Anant Madabhushi, Mark Rosen, John Tomaszeweski y Michael Feldman. "A COMBINED FEATURE ENSEMBLE BASED MUTUAL INFORMATION SCHEME FOR ROBUST INTER-MODAL, INTER-PROTOCOL IMAGE REGISTRATION". En 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, 2007. http://dx.doi.org/10.1109/isbi.2007.356934.
Texto completoBashkanov, Oleksii, Anneke Meyer, Daniel Schindele, Martin Schostak, Klaus-Dietz Tonnies, Christian Hansen y Marko Rak. "Learning Multi-Modal Volumetric Prostate Registration With Weak Inter-Subject Spatial Correspondence". En 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9433848.
Texto completoPapp, L., N. Zsoter, G. Szabo, C. Bejan, E. Szimjanovszki y M. Zuhayra. "Parallel registration of multi-modal medical image triples having unknown inter-image geometry". En 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2009. http://dx.doi.org/10.1109/iembs.2009.5335168.
Texto completo