Literatura académica sobre el tema "Integrated quantum nanophotonics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Integrated quantum nanophotonics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Integrated quantum nanophotonics"
Osborne, Ian S. "Integrated quantum nanophotonics". Science 354, n.º 6314 (17 de noviembre de 2016): 843.11–845. http://dx.doi.org/10.1126/science.354.6314.843-k.
Texto completoHausmann, Birgit J. M., Brendan Shields, Qimin Quan, Patrick Maletinsky, Murray McCutcheon, Jennifer T. Choy, Tom M. Babinec et al. "Integrated Diamond Networks for Quantum Nanophotonics". Nano Letters 12, n.º 3 (27 de febrero de 2012): 1578–82. http://dx.doi.org/10.1021/nl204449n.
Texto completoAltug, Hatice. "Nanophotonic Metasurfaces for Biosensing and Imaging". EPJ Web of Conferences 215 (2019): 12001. http://dx.doi.org/10.1051/epjconf/201921512001.
Texto completoChen, Yueyang, David Sharp, Abhi Saxena, Hao Nguyen, Brandi M. Cossairt y Arka Majumdar. "Integrated Quantum Nanophotonics with Solution‐Processed Materials". Advanced Quantum Technologies 5, n.º 1 (20 de noviembre de 2021): 2100078. http://dx.doi.org/10.1002/qute.202100078.
Texto completoPérez, Daniel, Ivana Gasulla y José Capmany. "Programmable multifunctional integrated nanophotonics". Nanophotonics 7, n.º 8 (28 de julio de 2018): 1351–71. http://dx.doi.org/10.1515/nanoph-2018-0051.
Texto completoVaidya, V. D., B. Morrison, L. G. Helt, R. Shahrokshahi, D. H. Mahler, M. J. Collins, K. Tan et al. "Broadband quadrature-squeezed vacuum and nonclassical photon number correlations from a nanophotonic device". Science Advances 6, n.º 39 (septiembre de 2020): eaba9186. http://dx.doi.org/10.1126/sciadv.aba9186.
Texto completoSipahigil, A., R. E. Evans, D. D. Sukachev, M. J. Burek, J. Borregaard, M. K. Bhaskar, C. T. Nguyen et al. "An integrated diamond nanophotonics platform for quantum-optical networks". Science 354, n.º 6314 (13 de octubre de 2016): 847–50. http://dx.doi.org/10.1126/science.aah6875.
Texto completoRoques-Carmes, Charles, Steven E. Kooi, Yi Yang, Nicholas Rivera, Phillip D. Keathley, John D. Joannopoulos, Steven G. Johnson, Ido Kaminer, Karl K. Berggren y Marin Soljačić. "Free-electron–light interactions in nanophotonics". Applied Physics Reviews 10, n.º 1 (marzo de 2023): 011303. http://dx.doi.org/10.1063/5.0118096.
Texto completoMattioli, Francesco, Sara Cibella, Alessandro Gaggero, Francesco Martini y Roberto Leoni. "Waveguide-integrated niobium- nitride detectors for on-chip quantum nanophotonics". Nanotechnology 32, n.º 10 (10 de diciembre de 2020): 104001. http://dx.doi.org/10.1088/1361-6528/abcc97.
Texto completoChin, Lip Ket, Yuzhi Shi y Ai-Qun Liu. "Optical Forces in Silicon Nanophotonics and Optomechanical Systems: Science and Applications". Advanced Devices & Instrumentation 2020 (26 de octubre de 2020): 1–14. http://dx.doi.org/10.34133/2020/1964015.
Texto completoTesis sobre el tema "Integrated quantum nanophotonics"
Pierini, Stefano. "Experimental Study of Perovskite Nanocrystals as Single Photon Sources for Integrated Quantum Photonics". Thesis, Troyes, 2021. http://www.theses.fr/2021TROY0009.
Texto completoThis thesis is devoted to the study of the coupling of single-photon emitters with photonic nanostructures by using the properties of the near field of a photonic structure in view of the realization of a compact integrated single-photon source for quantum applications. The first part of my thesis work was consecrated to the optimization of perovskites nanocrystals. Although perovskites nanocrystals are very promising single-photon sources, they still need improvements: in this work, I review the main properties of these emitters and present a full characterization of perovskite nanocrystals with improved photo-stability, reduced blinking ad strong antibunching. In the second part of the thesis, I focus on the coupling of quantum emitters with various photonic structures: namely the tapered optical nanofibers and the ion-exchange waveguides. The fabrication method and the optical properties of the nanofibers are described in detail and the coupling of a single perovskite nanocrystal with a nanofiber is achieved, which constitutes a proof of principle of a hybrid integrated single-photon source. Finally, I show how the near field around ion Exchange waveguides can be employed together with near-field polymerizations to trap single-photon emitters onto the waveguides
Rahbany, Nancy. "Towards integrated optics at the nanoscale : plasmon-emitter coupling using plasmonic structures". Thesis, Troyes, 2016. http://www.theses.fr/2016TROY0003/document.
Texto completoThere is a growing interest nowadays in the study of strong light-matter interaction at the nanoscale, specifically between plasmons and emitters. Researchers in the fields of plasmonics, nanooptics and nanophotonics are constantly exploring new ways to control and enhance surface plasmon launching, propagation, and localization. Moreover, emitters placed in the vicinity of metallic nanoantennas exhibit a fluorescence rate enhancement due to the increase in the electromagnetic field confinement. However, numerous applications such as optical electronics, nanofabrication and sensing devices require a very high optical resolution which is limited by the diffraction limit. Targeting this problem, we introduce a novel plasmonic structure consisting of nanoantennas integrated in the center of ring diffraction gratings. Propagating surface plasmon polaritons (SPPs) are generated by the ring grating and couple with localized surface plasmons (LSPs) at the nanoantennas exciting emitters placed in the gap. We provide a thorough characterization of the optical properties of the simple ring grating structure, the double bowtie nanoantenna, and the integrated ring grating/nanoantenna structure, and study the coupling with an ensemble of molecules as well as single SiV centers in diamond. The combination of the sub-wavelength confinement of LSPs and the high energy of SPPs in our structure leads to precise nanofocusing at the nanoscale, which can be implemented to study plasmon-emitter coupling in the weak and strong coupling regimes
Alton, Daniel James. "Interacting Single Atoms with Nanophotonics for Chip-Integrated Quantum Network". Thesis, 2013. https://thesis.library.caltech.edu/7832/7/Chapter_4.pdf.
Texto completoPazzagli, Sofia. "Organic nanocrystals and polymeric waveguides: a novel path towards integrated quantum nanophotonics". Doctoral thesis, 2018. http://hdl.handle.net/2158/1130778.
Texto completoCapítulos de libros sobre el tema "Integrated quantum nanophotonics"
Lin, Lih Y. "Quantum Dot Nanophotonic Integrated Circuits". En Encyclopedia of Nanotechnology, 3389–99. Dordrecht: Springer Netherlands, 2016. http://dx.doi.org/10.1007/978-94-017-9780-1_193.
Texto completoLin, Lih Y., Wafa’ T. Al-Jamal y Kostas Kostarelos. "Quantum Dot Nanophotonic Integrated Circuits". En Encyclopedia of Nanotechnology, 2187–96. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-90-481-9751-4_193.
Texto completoMokkapati, S., H. Tan y C. Jagadish. "Quantum Dot Integrated Optoelectronic Devices". En VLSI Micro- and Nanophotonics, 11‚Äì1–11‚Äì34. CRC Press, 2010. http://dx.doi.org/10.1201/b10371-19.
Texto completoChuen Lim, Han y Mao Tong Liu. "Integrated nanophotonics for multi-user quantum key distribution networks". En Nanophotonics and Plasmonics, 305–44. CRC Press, 2017. http://dx.doi.org/10.1201/9781315153063-14.
Texto completo"Chapter 14: Integrated nanophotonics for multi‒user quantum key distribution networks". En Nanophotonics and Plasmonics, editado por Han Chuen Lim y Mao Tong Liu, 305–44. 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315153063-18.
Texto completoSuhara, Toshiaki y Masahiro Uemukai. "Integrated photonic devices using semiconductor quantum-well structures". En Nano Biophotonics - Science and Technology, Proceedings of the 3rd International Nanophotonics Symposium Handai, 387–409. Elsevier, 2007. http://dx.doi.org/10.1016/s1574-0641(07)80031-3.
Texto completoAsakawa, Kiyoshi, Nobuhiko Ozaki, Shunsuke Ohkouchi, Yoshimasa Sugimoto y Naoki Ikeda. "Advanced Growth Techniques of InAs-system Quantum Dots for Integrated Nanophotonic Circuits". En Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics, 529–51. Elsevier, 2008. http://dx.doi.org/10.1016/b978-0-08-046325-4.00017-7.
Texto completoActas de conferencias sobre el tema "Integrated quantum nanophotonics"
Bogdanov, Simeon, Mikhail Y. Shalaginov, Justus C. Ndukaife, Oksana A. Makarova, Alexey V. Akimov, Alexei S. Lagutchev, Alexander V. Kildishev, Alexandra Boltasseva y Vladimir M. Shalaev. "Towards integrated plasmonic quantum devices (Conference Presentation)". En Quantum Nanophotonics, editado por Mark Lawrence y Jennifer A. Dionne. SPIE, 2017. http://dx.doi.org/10.1117/12.2274245.
Texto completoYamanaka, Takayuki, Dimitri Alexson, Michael A. Stroscio, Mitra Dutta, Jay Brown, Pierre Petroff y James Speck. "GaN quantum dots: nanophotonics and nanophononics". En Integrated Optoelectronic Devices 2006, editado por Manijeh Razeghi y Gail J. Brown. SPIE, 2006. http://dx.doi.org/10.1117/12.641062.
Texto completoGiesz, Valérian, Niccolo Somaschi, Lorenzo De Santis, Simone Luca Portalupi, Christophe Arnold, Olivier Gazzano, Anna Nowak et al. "Quantum dot based quantum optics". En Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/iprsn.2015.is4a.3.
Texto completoMalhotra, T., Y. Lai, M. Galli, D. Gerace, R. Boyd y A. Badolato. "Integrated Nanophotonics for Quantum Photonics Devices". En Conference on Coherence and Quantum Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/cqo.2013.m6.61.
Texto completoThompson, Mark. "Silicon Integrated Quantum Photonics". En Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/iprsn.2013.im4a.4.
Texto completoAbellan, C., W. Amaya, D. Tulli, M. W. Mitchell y V. Pruneri. "Integrated Quantum Entropy Sources". En Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/iprsn.2018.iw2b.2.
Texto completoLukin, Mikhail. "Quantum Interfaces Based on Nanophotonic Systems". En Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/iprsn.2015.is4a.1.
Texto completode Goede, M., H. J. Snijders, P. Venderbosch, B. Kassenberg, N. Kannan, D. Smith, C. Taballione, J. P. Epping, H. H. van den Vlekkert y J. J. Renema. "High Fidelity 12-Mode Quantum Photonic Processor Operating at InGaAs Quantum Dot Wavelength". En Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.itu4b.3.
Texto completoMarcucci, Giulia, Robert Boyd y Claudio Conti. "Quantum Peregrine Soliton Generation". En Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/iprsn.2020.jm2e.5.
Texto completoJeon, Woong Bae, Jong Sung Moon, Kyu-Young Kim, Young-Ho Ko, Christopher J. K. Richardson, Edo Waks y Je-Hyung Kim. "Plug-and-Play Quantum Light Sources with Efficient Fiber-Interfacing Quantum Dots". En Integrated Photonics Research, Silicon and Nanophotonics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/iprsn.2022.iw2b.2.
Texto completo