Artículos de revistas sobre el tema "Integrated nanophotonic circuit"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Integrated nanophotonic circuit".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Goltsman, Gregory. "Quantum photonic integrated circuits with waveguide integrated superconducting nanowire single-photon detectors". EPJ Web of Conferences 190 (2018): 02004. http://dx.doi.org/10.1051/epjconf/201819002004.
Texto completoPyatkov, Felix, Svetlana Khasminskaya, Vadim Kovalyuk, Frank Hennrich, Manfred M. Kappes, Gregory N. Goltsman, Wolfram H. P. Pernice y Ralph Krupke. "Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers". Beilstein Journal of Nanotechnology 8 (5 de enero de 2017): 38–44. http://dx.doi.org/10.3762/bjnano.8.5.
Texto completoShiue, Ren-Jye, Dmitri K. Efetov, Gabriele Grosso, Cheng Peng, Kin Chung Fong y Dirk Englund. "Active 2D materials for on-chip nanophotonics and quantum optics". Nanophotonics 6, n.º 6 (15 de marzo de 2017): 1329–42. http://dx.doi.org/10.1515/nanoph-2016-0172.
Texto completoMatsuda, Nobuyuki y Hiroki Takesue. "Generation and manipulation of entangled photons on silicon chips". Nanophotonics 5, n.º 3 (1 de agosto de 2016): 440–55. http://dx.doi.org/10.1515/nanoph-2015-0148.
Texto completoTassaert, M., S. Keyvaninia, D. Van Thourhout, W. M. J. Green, Y. Vlasov y G. Roelkens. "An optically pumped nanophotonic InP/InGaAlAs optical amplifier integrated on a SOI waveguide circuit". Optical and Quantum Electronics 44, n.º 12-13 (9 de marzo de 2012): 513–19. http://dx.doi.org/10.1007/s11082-012-9568-x.
Texto completoUppu, Ravitej, Freja T. Pedersen, Ying Wang, Cecilie T. Olesen, Camille Papon, Xiaoyan Zhou, Leonardo Midolo et al. "Scalable integrated single-photon source". Science Advances 6, n.º 50 (diciembre de 2020): eabc8268. http://dx.doi.org/10.1126/sciadv.abc8268.
Texto completoVan Campenhout, J., P. Rojo Romeo, P. Regreny, C. Seassal, D. Van Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe y R. Baets. "Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit". Optics Express 15, n.º 11 (2007): 6744. http://dx.doi.org/10.1364/oe.15.006744.
Texto completoHadden, J. P., Cobi Maynard, Daryl M. Beggs, Robert A. Taylor y Anthony J. Bennett. "Design of free-space couplers for suspended triangular nano-beam waveguides". Journal of Physics D: Applied Physics 55, n.º 47 (5 de octubre de 2022): 474002. http://dx.doi.org/10.1088/1361-6463/ac941e.
Texto completoChew, Xiong Yeu, Guang Ya Zhou y Fook Siong Chau. "Novel Doubly Nano-Scale Perturbative Resonance Control of a Free-Suspending Photonic Crystal Structure". Applied Mechanics and Materials 83 (julio de 2011): 147–50. http://dx.doi.org/10.4028/www.scientific.net/amm.83.147.
Texto completoRomeira, Bruno, José M. L. Figueiredo y Julien Javaloyes. "NanoLEDs for energy-efficient and gigahertz-speed spike-based sub-λ neuromorphic nanophotonic computing". Nanophotonics 9, n.º 13 (25 de junio de 2020): 4149–62. http://dx.doi.org/10.1515/nanoph-2020-0177.
Texto completoMorales-Bonilla, Samuel, Cecilia Mercado-Zúñiga, Juan Pablo Campos-López, César Carrillo-Delgado, Claudia Lizbeth Martínez-González y Carlos Torres-Torres. "Unidirectional Optical Kerr Transmittance in Hierarchical Carbon/Platinum Nanostructures". Photonics 7, n.º 3 (30 de julio de 2020): 54. http://dx.doi.org/10.3390/photonics7030054.
Texto completoAbdollahramezani, Sajjad, Omid Hemmatyar, Hossein Taghinejad, Alex Krasnok, Yashar Kiarashinejad, Mohammadreza Zandehshahvar, Andrea Alù y Ali Adibi. "Tunable nanophotonics enabled by chalcogenide phase-change materials". Nanophotonics 9, n.º 5 (6 de junio de 2020): 1189–241. http://dx.doi.org/10.1515/nanoph-2020-0039.
Texto completoXiong, Chi, Wolfram Pernice, Carsten Schuck y Hong X. Tang. "Integrated Photonic Circuits in Gallium Nitride and Aluminum Nitride". International Journal of High Speed Electronics and Systems 23, n.º 01n02 (marzo de 2014): 1450001. http://dx.doi.org/10.1142/s0129156414500013.
Texto completoAnikina, Maria A., Prithu Roy, Svetlana A. Kadinskaya, Alexey Kuznetsov, Valeriy M. Kondratev y Alexey D. Bolshakov. "Numerical Study of GaP Nanowires: Individual and Coupled Optical Waveguides and Resonant Phenomena". Nanomaterials 13, n.º 1 (23 de diciembre de 2022): 56. http://dx.doi.org/10.3390/nano13010056.
Texto completoRath, P., S. Ummethala, S. Diewald, G. Lewes-Malandrakis, D. Brink, N. Heidrich, C. Nebel y W. H. P. Pernice. "Diamond electro-optomechanical resonators integrated in nanophotonic circuits". Applied Physics Letters 105, n.º 25 (22 de diciembre de 2014): 251102. http://dx.doi.org/10.1063/1.4901105.
Texto completoSplitthoff, Lukas, Martin A. Wolff, Thomas Grottke y Carsten Schuck. "Tantalum pentoxide nanophotonic circuits for integrated quantum technology". Optics Express 28, n.º 8 (8 de abril de 2020): 11921. http://dx.doi.org/10.1364/oe.388080.
Texto completoFang, Yurui y Mengtao Sun. "Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits". Light: Science & Applications 4, n.º 6 (junio de 2015): e294-e294. http://dx.doi.org/10.1038/lsa.2015.67.
Texto completoJiao, Yuqing, Jos van der Tol, Vadim Pogoretskii, Jorn van Engelen, Amir Abbas Kashi, Sander Reniers, Yi Wang et al. "Indium Phosphide Membrane Nanophotonic Integrated Circuits on Silicon". physica status solidi (a) 217, n.º 3 (20 de diciembre de 2019): 1900606. http://dx.doi.org/10.1002/pssa.201900606.
Texto completoHe, Jijun, Ioannis Paradisanos, Tianyi Liu, Alisson R. Cadore, Junqiu Liu, Mikhail Churaev, Rui Ning Wang et al. "Low-Loss Integrated Nanophotonic Circuits with Layered Semiconductor Materials". Nano Letters 21, n.º 7 (23 de marzo de 2021): 2709–18. http://dx.doi.org/10.1021/acs.nanolett.0c04149.
Texto completoRath, Patrik, Oliver Kahl, Simone Ferrari, Fabian Sproll, Georgia Lewes-Malandrakis, Dietmar Brink, Konstantin Ilin, Michael Siegel, Christoph Nebel y Wolfram Pernice. "Superconducting single-photon detectors integrated with diamond nanophotonic circuits". Light: Science & Applications 4, n.º 10 (octubre de 2015): e338-e338. http://dx.doi.org/10.1038/lsa.2015.111.
Texto completoWei, Hong y Hongxing Xu. "Nanowire-based plasmonic waveguides and devices for integrated nanophotonic circuits". Nanophotonics 1, n.º 2 (1 de noviembre de 2012): 155–69. http://dx.doi.org/10.1515/nanoph-2012-0012.
Texto completoFirby, Curtis J., PoHan Chang, Amr S. Helmy y Abdulhakem Y. Elezzabi. "Versatile broadband polarization-independent optical circulators for nanophotonic integrated circuits". Journal of the Optical Society of America B 35, n.º 7 (4 de junio de 2018): 1504. http://dx.doi.org/10.1364/josab.35.001504.
Texto completoBradley, Jonathan. "(Invited) Rare-Earth-Doped Tellurium Oxide Light Emitting Nanophotonic Devices". ECS Meeting Abstracts MA2022-01, n.º 20 (7 de julio de 2022): 1092. http://dx.doi.org/10.1149/ma2022-01201092mtgabs.
Texto completoZhao, Mengdi y Kejie Fang. "InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio". Optica 9, n.º 2 (18 de febrero de 2022): 258. http://dx.doi.org/10.1364/optica.440383.
Texto completoSugimoto, Y., N. Ikeda, N. Ozaki, Y. Watanabe, S. Ohkouchi, T. Kuroda, T. Mano et al. "Advanced quantum dot and photonic crystal technologies for integrated nanophotonic circuits". Microelectronics Journal 40, n.º 4-5 (abril de 2009): 736–40. http://dx.doi.org/10.1016/j.mejo.2008.11.003.
Texto completoZhang, Junxi, Lei Hu, Zhijia Hu, Yongqing Wei, Wei Zhang y Lide Zhang. "Broadband Plasmonic Nanopolarizer Based on Different Surface Plasmon Resonance Modes in a Silver Nanorod". Crystals 10, n.º 6 (31 de mayo de 2020): 447. http://dx.doi.org/10.3390/cryst10060447.
Texto completoHARRIS, JAMES S. "(GaIn)(NAsSb): MBE GROWTH, HETEROSTRUCTURE AND NANOPHOTONIC DEVICES". International Journal of Nanoscience 06, n.º 03n04 (junio de 2007): 269–74. http://dx.doi.org/10.1142/s0219581x07004699.
Texto completoElmanov, Ilia, Anna Elmanova, Sophia Komrakova, Alexander Golikov, Natalya Kaurova, Vadim Kovalyuk y Gregory Goltsman. "Method for determination of resists parameters for photonic - integrated circuits e-beam lithography on silicon nitride platform". EPJ Web of Conferences 220 (2019): 03012. http://dx.doi.org/10.1051/epjconf/201922003012.
Texto completoRath, Patrik, Svetlana Khasminskaya, Christoph Nebel, Christoph Wild y Wolfram HP Pernice. "Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films". Beilstein Journal of Nanotechnology 4 (7 de mayo de 2013): 300–305. http://dx.doi.org/10.3762/bjnano.4.33.
Texto completoAsgari, Somayyeh y Nosrat Granpayeh. "Applications of Tunable Nanoscale Midinfrared Graphene Based Slot Cavity in Nanophotonic Integrated Circuits". IEEE Transactions on Nanotechnology 17, n.º 3 (mayo de 2018): 533–42. http://dx.doi.org/10.1109/tnano.2018.2822277.
Texto completoDai, Daoxin y Mao Mao. "Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits". Optics Express 23, n.º 22 (21 de octubre de 2015): 28376. http://dx.doi.org/10.1364/oe.23.028376.
Texto completoAhmed, Moustafa, Yas Al-Hadeethi, Ahmed Bakry, Hamed Dalir y Volker J. Sorger. "Integrated photonic FFT for photonic tensor operations towards efficient and high-speed neural networks". Nanophotonics 9, n.º 13 (26 de junio de 2020): 4097–108. http://dx.doi.org/10.1515/nanoph-2020-0055.
Texto completoSon, Gyeongho, Seungjun Han, Jongwoo Park, Kyungmok Kwon y Kyoungsik Yu. "High-efficiency broadband light coupling between optical fibers and photonic integrated circuits". Nanophotonics 7, n.º 12 (20 de octubre de 2018): 1845–64. http://dx.doi.org/10.1515/nanoph-2018-0075.
Texto completoYu, Longhai, Jiajiu Zheng, Yang Xu, Daoxin Dai y Sailing He. "Local and Nonlocal Optically Induced Transparency Effects in Graphene–Silicon Hybrid Nanophotonic Integrated Circuits". ACS Nano 8, n.º 11 (7 de noviembre de 2014): 11386–93. http://dx.doi.org/10.1021/nn504377m.
Texto completoTokushima, Masatoshi, J. J. Vegas Olmos y Ken-Ichi Kitayama. "Ultracompact Photonic-Waveguide Circuits in Si-Pillar Photonic-Crystal Structures for Integrated Nanophotonic Switches". Journal of Nanoscience and Nanotechnology 10, n.º 3 (1 de marzo de 2010): 1626–34. http://dx.doi.org/10.1166/jnn.2010.2046.
Texto completoZheng, Jiajiu, Amey Khanolkar, Peipeng Xu, Shane Colburn, Sanchit Deshmukh, Jason Myers, Jesse Frantz et al. "GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform". Optical Materials Express 8, n.º 6 (17 de mayo de 2018): 1551. http://dx.doi.org/10.1364/ome.8.001551.
Texto completoCui, Luna y Li Yu. "Multifunctional logic gates based on silicon hybrid plasmonic waveguides". Modern Physics Letters B 32, n.º 02 (20 de enero de 2018): 1850008. http://dx.doi.org/10.1142/s0217984918500082.
Texto completoPiracha, Afaq H., Patrik Rath, Kumaravelu Ganesan, Stefan Kühn, Wolfram H. P. Pernice y Steven Prawer. "Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows". Nano Letters 16, n.º 5 (27 de abril de 2016): 3341–47. http://dx.doi.org/10.1021/acs.nanolett.6b00974.
Texto completoSumetsky, M. "Nanophotonics of optical fibers". Nanophotonics 2, n.º 5-6 (16 de diciembre de 2013): 393–406. http://dx.doi.org/10.1515/nanoph-2013-0041.
Texto completoHarris, Nicholas C., Darius Bunandar, Mihir Pant, Greg R. Steinbrecher, Jacob Mower, Mihika Prabhu, Tom Baehr-Jones, Michael Hochberg y Dirk Englund. "Large-scale quantum photonic circuits in silicon". Nanophotonics 5, n.º 3 (1 de agosto de 2016): 456–68. http://dx.doi.org/10.1515/nanoph-2015-0146.
Texto completoKaushik, Vishal, Swati Rajput, Sulabh Srivastav, Lalit Singh, Prem Babu, Elham Heidari, Moustafa Ahmed et al. "On-chip nanophotonic broadband wavelength detector with 2D-Electron gas". Nanophotonics 11, n.º 2 (30 de noviembre de 2021): 289–96. http://dx.doi.org/10.1515/nanoph-2021-0365.
Texto completoZhu, Jinlong, Jiamin Liu, Tianlai Xu, Shuai Yuan, Zexu Zhang, Hao Jiang, Honggang Gu, Renjie Zhou y Shiyuan Liu. "Optical wafer defect inspection at the 10 nm technology node and beyond". International Journal of Extreme Manufacturing 4, n.º 3 (21 de abril de 2022): 032001. http://dx.doi.org/10.1088/2631-7990/ac64d7.
Texto completoSiampour, Hamidreza, Ou Wang, Vladimir A. Zenin, Sergejs Boroviks, Petr Siyushev, Yuanqing Yang, Valery A. Davydov et al. "Ultrabright single-photon emission from germanium-vacancy zero-phonon lines: deterministic emitter-waveguide interfacing at plasmonic hot spots". Nanophotonics 9, n.º 4 (2 de abril de 2020): 953–62. http://dx.doi.org/10.1515/nanoph-2020-0036.
Texto completoFERRY, D. K., R. AKIS, M. J. GILBERT, A. CUMMINGS y S. M. RAMEY. "SEMICONDUCTOR DEVICE SCALING: PHYSICS, TRANSPORT, AND THE ROLE OF NANOWIRES". International Journal of High Speed Electronics and Systems 17, n.º 03 (septiembre de 2007): 445–56. http://dx.doi.org/10.1142/s0129156407004631.
Texto completoRodt, S. y S. Reitzenstein. "Integrated nanophotonics for the development of fully functional quantum circuits based on on-demand single-photon emitters". APL Photonics 6, n.º 1 (1 de enero de 2021): 010901. http://dx.doi.org/10.1063/5.0031628.
Texto completoHäußler, Matthias, Robin Terhaar, Martin A. Wolff, Helge Gehring, Fabian Beutel, Wladick Hartmann, Nicolai Walter et al. "Scaling waveguide-integrated superconducting nanowire single-photon detector solutions to large numbers of independent optical channels". Review of Scientific Instruments 94, n.º 1 (1 de enero de 2023): 013103. http://dx.doi.org/10.1063/5.0114903.
Texto completoMinin, I. V. y O. V. Minin. "Structured plasmonic beam: in-plane manipulation of light at the nanoscale". IOP Conference Series: Materials Science and Engineering 1198, n.º 1 (1 de noviembre de 2021): 012008. http://dx.doi.org/10.1088/1757-899x/1198/1/012008.
Texto completoYang, Xiaoyu, Xiaoyong Hu, Hong Yang y Qihuang Gong. "Ultracompact all-optical logic gates based on nonlinear plasmonic nanocavities". Nanophotonics 6, n.º 1 (6 de enero de 2017): 365–76. http://dx.doi.org/10.1515/nanoph-2016-0118.
Texto completoChen, Xinyu, Renjie Li, Yueyao Yu, Yuanwen Shen, Wenye Li, Yin Zhang y Zhaoyu Zhang. "POViT: Vision Transformer for Multi-Objective Design and Characterization of Photonic Crystal Nanocavities". Nanomaterials 12, n.º 24 (9 de diciembre de 2022): 4401. http://dx.doi.org/10.3390/nano12244401.
Texto completoAl-Tameemi, Saif y Mohammed Nadhim Abbas. "All-Optical Universal Logic Gates at Nano-scale Dimensions". Iraqi Journal of Nanotechnology, n.º 2 (7 de diciembre de 2021): 34–43. http://dx.doi.org/10.47758/ijn.vi2.49.
Texto completo