Literatura académica sobre el tema "Inlet distortions"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Inlet distortions".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Inlet distortions"
Ariga, I., S. Masuda y A. Ookita. "Inducer Stall in a Centrifugal Compressor With Inlet Distortion". Journal of Turbomachinery 109, n.º 1 (1 de enero de 1987): 27–35. http://dx.doi.org/10.1115/1.3262066.
Texto completoLowe, K. Todd. "Laser velocimetry for turbofan inlet distortion applications". Aircraft Engineering and Aerospace Technology 92, n.º 1 (6 de enero de 2020): 20–26. http://dx.doi.org/10.1108/aeat-11-2018-0285.
Texto completoPazur, W. y L. Fottner. "The Influence of Inlet Swirl Distortions on the Performance of a Jet Propulsion Two-Stage Axial Compressor". Journal of Turbomachinery 113, n.º 2 (1 de abril de 1991): 233–40. http://dx.doi.org/10.1115/1.2929091.
Texto completoPečinka, Jiří, Gabriel Thomas Bugajski, Petr Kmoch y Adolf Jílek. "JET ENGINE INLET DISTORTION SCREEN AND DESCRIPTOR EVALUATION". Acta Polytechnica 57, n.º 1 (28 de febrero de 2017): 22–31. http://dx.doi.org/10.14311/ap.2017.57.0022.
Texto completoHah, C., D. C. Rabe, T. J. Sullivan y A. R. Wadia. "Effects of Inlet Distortion on the Flow Field in a Transonic Compressor Rotor". Journal of Turbomachinery 120, n.º 2 (1 de abril de 1998): 233–46. http://dx.doi.org/10.1115/1.2841398.
Texto completoFang, Yibo, Dakun Sun, Xu Dong y Xiaofeng Sun. "Effects of Inlet Swirl Distortion on a Multi-Stage Compressor with Inlet Guide Vanes and Stall Margin Enhancement Method". Aerospace 10, n.º 2 (2 de febrero de 2023): 141. http://dx.doi.org/10.3390/aerospace10020141.
Texto completoLeinhos, Dirk C., Norbert R. Schmid y Leonhard Fottner. "The Influence of Transient Inlet Distortions on the Instability Inception of a Low-Pressure Compressor in a Turbofan Engine". Journal of Turbomachinery 123, n.º 1 (1 de febrero de 2000): 1–8. http://dx.doi.org/10.1115/1.1330271.
Texto completoNg, Eddie Yin-Kwee, Ningyu Liu, Hong Ngiap Lim y Daniel Tan. "An Improved Integral Method for Prediction of Distorted Inlet Flow Propagation in Axial Compressor". International Journal of Rotating Machinery 2005, n.º 2 (2005): 117–27. http://dx.doi.org/10.1155/ijrm.2005.117.
Texto completoSchmid, Norbert R., Dirk C. Leinhos y Leonhard Fottner. "Steady Performance Measurements of a Turbofan Engine With Inlet Distortions Containing Co- and Counterrotating Swirl From an Intake Diffuser for Hypersonic Flight". Journal of Turbomachinery 123, n.º 2 (1 de febrero de 2000): 379–85. http://dx.doi.org/10.1115/1.1343466.
Texto completoEngeda, Abraham, Yunbae Kim, Ronald Aungier y Gregory Direnzi. "The Inlet Flow Structure of a Centrifugal Compressor Stage and Its Influence on the Compressor Performance". Journal of Fluids Engineering 125, n.º 5 (1 de septiembre de 2003): 779–85. http://dx.doi.org/10.1115/1.1601255.
Texto completoTesis sobre el tema "Inlet distortions"
Guimaraes, Bucalo Tamara. "Fluid Dynamics of Inlet Swirl Distortions for Turbofan Engine Research". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82921.
Texto completoPh. D.
Gong, Yifang 1964. "A computational model for rotating stall and inlet distortions in multistage compressors". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/9733.
Texto completo"February 1999."
Includes bibliographical references (p. 175-182).
This thesis presents the conceptualization and development of a computational model for describing three-dimensional non-linear disturbances associated with instability and inlet distortion in multistage compressors. Specifically, the model is aimed at simulating the non-linear aspects of short wavelength stall inception, part span stall cells, and compressor response to three-dimensional inlet distortions. The computed results demonstrated the first-of-a-kind capability for simulating short wavelength stall inception in multistage compressors. The adequacy of the model is demonstrated by its application to reproduce the following phenomena: (1) response of a compressor to a square-wave total pressure inlet distortion; (2) behavior of long wavelength small amplitude disturbances in compressors; (3) short wavelength stall inception in a multistage compressor and the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic; ( 4) progressive stalling behavior in the first stage in a mismatched multistage compressor; (5) change of stall inception type (from modal to spike and vice versa) due to IGV stagger angle variation, and "unique rotor tip incidences at these points where the compressor stalls through short wavelength disturbances. The model has been applied to determine the parametric dependence of instability inception behavior in terms of amplitude and spatial distribution of initial disturbance, and intra-blade-row gaps. It is found that reducing the inter-blade row gaps suppresses the growth of short wavelength disturbances. It is also concluded from these parametric investigations that each local component group (rotor and its two adjacent stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group. For completeness, the methodology has been extended to describe finite amplitude disturbances in high-speed compressors. Results are presented for the response of a transonic compressor subjected to inlet distortions.
by Yifang Gong.
Ph.D.
Eisemann, Kevin Michael. "A Computational Study of Compressor Inlet Boundary Conditions with Total Temperature Distortions". Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/35969.
Texto completoMaster of Science
Giuliani, James Edward. "Jet Engine Fan Response to Inlet Distortions Generated by Ingesting Boundary Layer Flow". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1468564279.
Texto completoLambie, David. "Inlet distortion and turbofan engines". Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.305300.
Texto completoLongley, John Peter. "Inlet distortion and compressor stability". Thesis, University of Cambridge, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304354.
Texto completoHoopes, Kevin M. "A New Method for Generating Swirl Inlet Distortion for Jet Engine Research". Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/49545.
Texto completoA new method capable of recreating any arbitrary swirl distortion profile is needed in order to expand the capabilities of inlet distortion testing. This will allow designers to explore how an engine would react to a particular engine airframe combination as well as methods for creating swirl distortion tolerant engines. The following material will present such a method as well as experimental validation of its effectiveness.
Master of Science
Dosne, Cyril. "Development and implementation of adjoint formulation of explicit body-force models for aero-propulsive optimizations". Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. http://www.theses.fr/2024IPPAX026.
Texto completoIn civil aviation, the increasing exploration of innovative engine systems – such as ultra-high bypass ratio turbofan or open-rotor – and breakthrough engine-integration architectures – such as distributed propulsion or boundary-layer ingestion – require a coupled modeling of the aerodynamic and propulsion subsystems from the earliest design stages. Body-force models have proven capable of faithfully reproducing most of the coupling phenomena, such as the engine response to inlet flow distortions, at reduced computational cost. However, they lack an adjoint formulation to be efficiently used in gradient-based optimizations. The present PhD thesis focuses on the development of an adjoint approach for explicit body-force models. First, aero-propulsive optimizations of an academic distributed propulsion configuration are conducted using a lumped body-force model. Despite the simplicity of this model (of interest for conceptual design studies), 10.5% decrease in power consumption is achieved. Then the potential of this new methodology is investigated for the preliminary optimization of compressor stages, at first under clean inflow conditions. The Hall body-force model is considered for such purpose. The comparison of the blade shape gradients computed by the adjoint body-force with high-fidelity ones, obtained from blade-resolved computations, shows very good prediction for the rotor. This is observed over a large portion of the compressor characteristic, especially between near-design and surge operating conditions, while accuracy is reduced near the blockage. On the contrary, for stator shape gradients, only flow misalignment effects can be captured. At design conditions, the improvement of the compressor efficiency obtained by the adjoint body-force optimization has been confirmed through high-fidelity simulations. Optimization under radial inlet distortion are then investigated. Once again, the adjoint body-force approach is found capable of enhancing the compressor performances, by adapting its geometry to the off-design inflow conditions. According to high-fidelity analysis of the body-force optimized blade geometry, an increase in compressor isentropic efficiency between 1.16 and 1.47% is achieved, given the formulation of the optimization problem. Finally, an optimization of the compressor under full-annulus inlet distortion is conducted leading to very promising results, which are consistent with those found in the literature using advanced simulations
Van, Schalkwyk Christiaan Mauritz. "Active control rotating stall with inlet distortion". Thesis, Massachusetts Institute of Technology, 1996. http://hdl.handle.net/1721.1/10827.
Texto completoIncludes bibliographical references (p. 179-182).
by Christiaan Mauritz Van Schalkwyk.
Ph.D.
Papamarkos, Ioannis. "Inlet distortion generation for a transonic compressor". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Sep%5FPapamarkos.pdf.
Texto completoLibros sobre el tema "Inlet distortions"
A, Ladd J., Yuhas A. J y United States. National Aeronautics and Space Administration., eds. Dynamic inlet distortion prediction with a combined computational fluid dynamics and distortion synthesis approach. [Washington, DC: National Aeronautics and Space Administration, 1996.
Buscar texto completoM, Greitzer Edward y Lewis Research Center, eds. Final technical report on grant NAG3-1567 entitled Inlet distortion in engines on VSTOL aircraft. Cleveland, OH: The Center, 1994.
Buscar texto completoYuhas, Andrew J. Design and development of an F/A-18 inlet distortion rake: a cost and time saving solution. Edwards, Calif: Dryden Flight Research Center, 1995.
Buscar texto completoUnited States. Army Aviation Research and Technology Activity. y United States. National Aeronautics and Space Administration., eds. Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Buscar texto completoH, Anderson Bernhard, Shaw Robert J. 1946- y United States. National Aeronautics and Space Administration., eds. A full Navier-Stokes analysis of subsonic diffuser of a a bifurcated 70/30 supersonic inlet for high speed civil transport application. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Buscar texto completoH, Anderson Bernhard, Shaw Robert J. 1946- y United States. National Aeronautics and Space Administration., eds. A full Navier-Stokes analysis of subsonic diffuser of a a bifurcated 70/30 supersonic inlet for high speed civil transport application. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Buscar texto completoD, Baust Henry, Agrell Johan y NASA Glenn Research Center, eds. Management of total pressure recovery, distortion and high cycle fatigue in compact air vehicle inlets. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2002.
Buscar texto completoH, Anderson Bernhard y United States. National Aeronautics and Space Administration., eds. A study on vortex flow control on inlet distortion in the re-engined 727-100 center inlet duct using computational fluid dynamics. [Washington, DC]: National Aeronautics and Space Administration, 1992.
Buscar texto completo1945-, Levy R. y United States. National Aeronautics and Space Administration., eds. A design strategy for the use of vortex generators to manage inlet-engine distortion using computational fluid dynamics. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Buscar texto completoCenter, Ames Research, ed. Sea level static calibration of a compact multimission aircraft propulsion simulator with inlet flow distortion. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1991.
Buscar texto completoCapítulos de libros sobre el tema "Inlet distortions"
Iseler, Jens, Andreas Lesser y Reinhard Niehuis. "Numerical Investigation of a Transonic Axial Compressor Stage with Inlet Distortions". En High Performance Computing in Science and Engineering, Garching/Munich 2009, 185–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13872-0_16.
Texto completoKurzke, Joachim y Ian Halliwell. "Inlet Flow Distortion". En Propulsion and Power, 249–67. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75979-1_6.
Texto completoWartzek, Fabian, Felix Holzinger, Christoph Brandstetter y Heinz-Peter Schiffer. "Realistic Inlet Distortion Patterns Interacting with a Transonic Compressor Stage". En Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 285–302. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-21127-5_17.
Texto completoQu, Yaoyao y Xiaoqing Qiang. "Design and Test of an Aero-Engine Inlet Distortion Screen Facility". En Lecture Notes in Electrical Engineering, 133–46. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0651-2_12.
Texto completoTheune, Marius, Dirk Schönweitz y Rainer Schnell. "Sensitivity of a Low Pressure Ratio Jet Engine Fan to Inlet Distortion". En Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 63–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27279-5_6.
Texto completoZhang, Bohan, Qiang Wang, Haiyang Hu y Yahua Zhang. "The Simulation of Compressor Performance of Inlet Distortion Using Split Actuator Disk Model". En Lecture Notes in Electrical Engineering, 280–93. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3305-7_23.
Texto completoLesser, Andreas, Sonja Schulze, Reinhard Niehuis, Christian Kähler y Jan Lieser. "Analytical Design of an Inlet Distortion Generator and Its Experimental and Numerical Validation". En Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 33–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-35680-3_5.
Texto completoLi, Jun, Youtian Zhou y Guoxing Song. "Experimental and Numerical Studies on Compressor Nonlinear Behaviors with Inlet Distortion and Their Interaction". En Nonlinear Systems and Complexity, 135–56. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94301-1_6.
Texto completoHuang, J., H. Wu y W. H. Du. "Experimental Investigation and Analysis of an Axial Compressor Stage with 45° Circumferential Inlet Flow Pressure Distortion". En New Trends in Fluid Mechanics Research, 503. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75995-9_166.
Texto completoActas de conferencias sobre el tema "Inlet distortions"
Defoe, J. J. y D. K. Hall. "Fan Performance Scaling With Inlet Distortions". En ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/gt2016-58009.
Texto completoLesser, Andreas y Reinhard Niehuis. "Transonic Axial Compressors With Total Pressure Inlet Flow Field Distortions". En ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/gt2014-26627.
Texto completoToracchio, Riccardo, Sina Stapelfeldt, Koen Hillewaert y Fabrizio Fontaneto. "Forced Response Analysis of a Highly-Loaded Low-Pressure Compressor Stage With Inlet Distortions". En ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-103881.
Texto completoFortin, J. y W. C. Moffatt. "Inlet Flow Distortion Effects on Rotating Stall". En ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-215.
Texto completoLongley, J. P., H. W. Shin, R. E. Plumley, P. D. Silkowski, I. J. Day, E. M. Greitzer, C. S. Tan y D. C. Wisler. "Effects of Rotating Inlet Distortion on Multisage Compressor Stability". En ASME 1994 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/94-gt-220.
Texto completoHan, Fenghui, Jiajian Tan, Yijun Mao, Datong Qi y Yiyun Zhang. "Effects of Flow Loss and Inlet Distortions Caused by Radial Inlet on the Performance of Centrifugal Compressor Stage". En ASME/JSME/KSME 2015 Joint Fluids Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/ajkfluids2015-09693.
Texto completoSureshkumar, Prathiban, Kuen-Bae Lee, Ricardo Puente y Sina Stapelfeldt. "Impact of the Spatial Arrangement of Inlet Distortions on Resonant Fan Response". En GPPS Chania22. GPPS, 2022. http://dx.doi.org/10.33737/gpps22-tc-132.
Texto completoPazur, Wolfram y Leonhard Fottner. "The Influence of Inlet Swirl Distortions on the Performance of a Jet Propulsion Two-Stage Axial Compressor". En ASME 1990 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1990. http://dx.doi.org/10.1115/90-gt-147.
Texto completoHah, Chunill, Douglas C. Rabe, Thomas J. Sullivan y Aspi R. Wadia. "Effects of Inlet Distortion on the Flow Field in a Transonic Compressor Rotor". En ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-547.
Texto completoCharalambous, Nikolaos, Tiziano Ghisu, Giuseppe Iurisci, Vassilios Pachidis y Pericles Pilidis. "Axial Compressor Response to Inlet Flow Distortions by a CFD Analysis". En ASME Turbo Expo 2004: Power for Land, Sea, and Air. ASMEDC, 2004. http://dx.doi.org/10.1115/gt2004-53846.
Texto completoInformes sobre el tema "Inlet distortions"
Sedlock, Dennis. Improved Statistical Analysis Method for Prediction of Maximum Inlet Distortion. Fort Belvoir, VA: Defense Technical Information Center, marzo de 1985. http://dx.doi.org/10.21236/ada153767.
Texto completoMartinez, Melissa. Visual Patching and Imaging Chambers. ConductScience, julio de 2022. http://dx.doi.org/10.55157/cs20220507.
Texto completoDavoudzadeh, F., N. S. Liu, S. J. Shamroth y S. J. Thoren. A Navier-Stokes Study of Cascade Flow Fields Including Inlet Distortion and Rotating Stall. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1987. http://dx.doi.org/10.21236/ada193109.
Texto completoBidier, S., U. Khristenko, A. Kodakkal, C. Soriano y R. Rossi. D7.4 Final report on Stochastic Optimization results. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.02.
Texto completo