Siga este enlace para ver otros tipos de publicaciones sobre el tema: Inhomogeneous materials.

Artículos de revistas sobre el tema "Inhomogeneous materials"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Inhomogeneous materials".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Grimvall, G. y M. S�derberg. "Transport in macroscopically inhomogeneous materials". International Journal of Thermophysics 7, n.º 1 (enero de 1986): 207–11. http://dx.doi.org/10.1007/bf00503811.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Klemens, P. G. "Thermal conductivity of inhomogeneous materials". International Journal of Thermophysics 10, n.º 6 (noviembre de 1989): 1213–19. http://dx.doi.org/10.1007/bf00500572.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nan, Ce-Wen. "Physics of inhomogeneous inorganic materials". Progress in Materials Science 37, n.º 1 (enero de 1993): 1–116. http://dx.doi.org/10.1016/0079-6425(93)90004-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pasternak, Viktoriya, Lyudmila Samchuk, Artem Ruban, Oleksandr Chernenko y Nataliia Morkovska. "Investigation of the Main Stages in Modeling Spherical Particles of Inhomogeneous Materials". Materials Science Forum 1068 (19 de agosto de 2022): 207–14. http://dx.doi.org/10.4028/p-9jq543.

Texto completo
Resumen
This scientific study deals with the main issues related to the process of filling inhomogeneous materials into a rectangular hopper. The article develops an algorithm for filling particles of structurally inhomogeneous materials. A micrograph of the structure of samples of inhomogeneous materials is presented. It was found that the structure of samples of heterogeneous materials consists of three layers: external, internal and impurities of various grinding aggregates. Based on microstructural analysis, the presence of particles of various shapes and sizes was justified. On the basis of which the main initial conditions for filling the package with spherical particles were described. The basic physical and mechanical properties of structurally inhomogeneous materials were studied using the obtained results. We also constructed an approximate dependence of porosity on the particle diameter of inhomogeneous materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Milton, Graeme W. "Analytic materials". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, n.º 2195 (noviembre de 2016): 20160613. http://dx.doi.org/10.1098/rspa.2016.0613.

Texto completo
Resumen
The theory of inhomogeneous analytic materials is developed. These are materials where the coefficients entering the equations involve analytic functions. Three types of analytic materials are identified. The first two types involve an integer p . If p takes its maximum value, then we have a complete analytic material. Otherwise, it is incomplete analytic material of rank p . For two-dimensional materials, further progress can be made in the identification of analytic materials by using the well-known fact that a 90 ° rotation applied to a divergence-free field in a simply connected domain yields a curl-free field, and this can then be expressed as the gradient of a potential. Other exact results for the fields in inhomogeneous media are reviewed. Also reviewed is the subject of metamaterials, as these materials provide a way of realizing desirable coefficients in the equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Mironov, Vladimir I., Olga A. Lukashuk y Dmitry A. Ogorelkov. "On Durability of Structurally Inhomogeneous Materials". Materials Science Forum 1031 (mayo de 2021): 24–30. http://dx.doi.org/10.4028/www.scientific.net/msf.1031.24.

Texto completo
Resumen
Numerical methods used to calculate strength are based on energy approaches and minimization of functionals of one type or another. Yet the model of a material is limited to stable processes of deformation. As a result, a considerable number of deformation properties related to realization of the softening stage in materials of structural elements remains unaccounted for. To describe fracture as a new phenomenon in the behavior of structures, one needs to apply newer experimental and calculational approaches. The article cites results of modelling and experimental notions on the stage of softening in materials and its role in determining their durability. It is proposed to define the durability of a structurally inhomogeneous material as its capacity of equilibrium deformation beyond its ultimate strength under specified loading conditions. That reflects nonlocality of criteria for the failure of the material, their dependence both on its own properties and the geometry of a structural element. Complete stress-strain diagrams for structural materials of various classes and examples on how the softening stage is realized in structural materials are given.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Dyakonov, O. M. "Briquetting of structurally inhomogeneous porous materials". Proceedings of the National Academy of Sciences of Belarus, Physical-Technical Series 65, n.º 2 (7 de julio de 2020): 205–14. http://dx.doi.org/10.29235/1561-8358-2020-65-2-205-214.

Texto completo
Resumen
The work is devoted to solving the axisymmetric problem of the theory of pressing porous bodies with practical application in the form of force calculation of metallurgical processes of briquetting small fractional bulk materials: powder, chip, granulated and other metalworking wastes. For such materials, the shape of the particles (structural elements) is not geometrically correct or generally definable. This was the basis for the decision to be based on the continual model of a porous body. As a result of bringing this model to a two-dimensional spatial model, a closed analytical solution was obtained by the method of jointly solving differential equilibrium equations and the Guber–Mises energy condition of plasticity. The following assumptions were adopted as working hypotheses: the normal radial stress is equal to the tangential one, the lateral pressure coefficient is equal to the relative density of the compact. Due to the fact that the problem is solved in a general form and in a general formulation, the solution itself should be considered as methodological for any axisymmetric loading scheme. The transcendental equations of the deformation compaction of a porous body are obtained both for an ideal pressing process and taking into account contact friction forces. As a result of the development of a method for solving these equations, the formulas for calculating the local characteristics of the stressed state of the pressing, as well as the integral parameters of the pressing process are derived: pressure, stress, and deformation work.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Alshits, V. I. y H. O. K. Kirchner. "Cylindrically anisotropic, radially inhomogeneous elastic materials". Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 457, n.º 2007 (8 de marzo de 2001): 671–93. http://dx.doi.org/10.1098/rspa.2000.0687.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zhou, Q., Z. Bian y A. Shakouri. "Pulsed cooling of inhomogeneous thermoelectric materials". Journal of Physics D: Applied Physics 40, n.º 14 (29 de junio de 2007): 4376–81. http://dx.doi.org/10.1088/0022-3727/40/14/037.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

HIGUCHI, Masahiro, Kyohei TAKEO, Harunobu NAGINO, Takuya MORIMOTO y Yoshinobu TANIGAWA. "OS0121 Plate Theories of inhomogeneous materials". Proceedings of the Materials and Mechanics Conference 2009 (2009): 305–7. http://dx.doi.org/10.1299/jsmemm.2009.305.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Zhu, S. B., J. Lee y G. W. Robinson. "Kinetic energy imbalance in inhomogeneous materials". Chemical Physics Letters 161, n.º 3 (septiembre de 1989): 249–52. http://dx.doi.org/10.1016/s0009-2614(89)87069-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Hoff, Heinrich. "Asymmetrical heat conduction in inhomogeneous materials". Physica A: Statistical Mechanics and its Applications 131, n.º 2 (junio de 1985): 449–64. http://dx.doi.org/10.1016/0378-4371(85)90008-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Kayuk, Ya F. y M. K. Shekera. "Reduced mechanical characteristics of inhomogeneous materials". Soviet Applied Mechanics 27, n.º 5 (mayo de 1991): 501–7. http://dx.doi.org/10.1007/bf00887776.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Khmelevskaya, V. S. y V. G. Malynkin. "Radiation-induced inhomogeneous state of materials". Metal Science and Heat Treatment 42, n.º 8 (agosto de 2000): 331–34. http://dx.doi.org/10.1007/bf02471310.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Kumar, Kuldeep y Rajesh Kumar. "On Inhomogeneous Deformations in ES Materials". International Journal of Engineering Science 48, n.º 4 (abril de 2010): 405–16. http://dx.doi.org/10.1016/j.ijengsci.2009.10.005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Kharevych, Lily, Patrick Mullen, Houman Owhadi y Mathieu Desbrun. "Numerical coarsening of inhomogeneous elastic materials". ACM Transactions on Graphics 28, n.º 3 (27 de julio de 2009): 1–8. http://dx.doi.org/10.1145/1531326.1531357.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Svenson, O. M. "Nondestructive testing of highly inhomogeneous materials". Materials Science 32, n.º 4 (julio de 1996): 491–504. http://dx.doi.org/10.1007/bf02538978.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Axell, Jörgen, Johan Helsing y Göran Grimvall. "Joule heat distribution in inhomogeneous materials". Physica A: Statistical Mechanics and its Applications 157, n.º 1 (mayo de 1989): 618. http://dx.doi.org/10.1016/0378-4371(89)90371-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Brice, David K. "Ion implantation distributions in inhomogeneous materials". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 17, n.º 4 (noviembre de 1986): 289–99. http://dx.doi.org/10.1016/0168-583x(86)90114-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Gondzik, J. y H. Stachowiak. "Positron lifetime in inhomogeneous metallic materials". Crystal Research and Technology 22, n.º 12 (diciembre de 1987): 1511–14. http://dx.doi.org/10.1002/crat.2170221216.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Erokhin, Sergey y Victor Levin. "Inhomogeneous creep equation for viscoelastic materials". E3S Web of Conferences 410 (2023): 03002. http://dx.doi.org/10.1051/e3sconf/202341003002.

Texto completo
Resumen
The paper consider an inhomogeneous creep equation arising from a generalized Voigt model containing a Riemann-Liouville fractional derivative of the order 0 < β < 1. The Laplace transform is used for the numerical solution. The obtained solutions are compared with experimental data of polymer concrete samples. On the basis of this comparison the conclusion about the adequacy of the numerical solution method is made, and estimates of the model parameters are given.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Tao, Xiang Hua, Jing Qing Huang y Ying Chun Cai. "Inverse Analysis for Inhomogeneous Dielectric Coefficient of Pavement Material Based on Genetic Algorithm". Applied Mechanics and Materials 438-439 (octubre de 2013): 430–35. http://dx.doi.org/10.4028/www.scientific.net/amm.438-439.430.

Texto completo
Resumen
The key of ground penetrating radars application lies in the calculation of dielectric coefficient. The pavement materials are inhomogeneous medium in fact, the particle surface can induce the scatter and diffraction of electromagnetic wave. The inhomogeneous dielectricity can change the characteristics of reflected wave. It may even cause background noise of reflected signal, which will lead to mistakes in signal interpretation. Therefore it is necessary to analyze the inhomogeneous dielectric coefficients by GPR. This paper proposes the solutions of inverse analysis for inhomogeneous dielectric coefficients of pavement materials used GPR data. Two examples are given to assess the validity of genetic algorithms in inversion of pavement materials inhomogeneous dielectricity. The results show that genetic algorithm can converge into true solutions well. The backcalculated inhomogeneous dielectric coefficients can help to evaluate pavement properties further.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Budanov, V. E., N. L. Yevich y N. N. Suslov. "Permittivity Measurement Technique for Inhomogeneous Dielectric Materials". Telecommunications and Radio Engineering 65, n.º 15 (2006): 1439–51. http://dx.doi.org/10.1615/telecomradeng.v65.i15.80.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Roganova, N. A. y G. Z. Sharafutdinov. "Identification of mechanical properties of inhomogeneous materials". Mechanics of Solids 47, n.º 4 (julio de 2012): 448–53. http://dx.doi.org/10.3103/s0025654412040097.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Wang, Xu, Dongxing Mao, Wuzhou Yu y Zaixiu Jiang. "Sound barriers from materials of inhomogeneous impedance". Journal of the Acoustical Society of America 137, n.º 6 (junio de 2015): 3190–97. http://dx.doi.org/10.1121/1.4921279.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Elmaimouni, L., J. E. Lefebvre, A. Raherison y F. E. Ratolojanahary. "Acoustical Guided Waves in Inhomogeneous Cylindrical Materials". Ferroelectrics 372, n.º 1 (14 de noviembre de 2008): 115–23. http://dx.doi.org/10.1080/00150190802382074.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Crocker, John C., M. T. Valentine, Eric R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh y D. A. Weitz. "Two-Point Microrheology of Inhomogeneous Soft Materials". Physical Review Letters 85, n.º 4 (24 de julio de 2000): 888–91. http://dx.doi.org/10.1103/physrevlett.85.888.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Vislov, I. S., S. N. Kladiev, S. M. Slobodyan y A. M. Bogdan. "A Batch Feeder for Inhomogeneous Bulk Materials". IOP Conference Series: Materials Science and Engineering 124 (abril de 2016): 012033. http://dx.doi.org/10.1088/1757-899x/124/1/012033.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Haddi, A. y D. Weichert. "Elastic-plastic J-integral in inhomogeneous materials". Computational Materials Science 8, n.º 3 (julio de 1997): 251–60. http://dx.doi.org/10.1016/s0927-0256(97)00008-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bernabei, D., F. Ganovelli, N. Pietroni, P. Cignoni, S. Pattanaik y R. Scopigno. "Real-time single scattering inside inhomogeneous materials". Visual Computer 26, n.º 6-8 (21 de abril de 2010): 583–93. http://dx.doi.org/10.1007/s00371-010-0449-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Scibetta, M. "Master Curve analysis of potentially inhomogeneous materials". Engineering Fracture Mechanics 94 (noviembre de 2012): 56–70. http://dx.doi.org/10.1016/j.engfracmech.2012.07.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Kichigin, A. F., A. E. Kolosov, V. V. Klyavlin y V. G. Sidyachenko. "Probabilistic-geometric model of structurally inhomogeneous materials". Soviet Mining Science 24, n.º 2 (marzo de 1988): 87–94. http://dx.doi.org/10.1007/bf02497828.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Meister, J. J. "Ultrasonic methods in evaluation of inhomogeneous materials". Signal Processing 14, n.º 3 (abril de 1988): 306. http://dx.doi.org/10.1016/0165-1684(88)90086-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Zhu, S. B., J. Lee y G. W. Robinson. "Non-Maxwell velocity distributions in inhomogeneous materials". Journal of Fusion Energy 9, n.º 4 (diciembre de 1990): 465–67. http://dx.doi.org/10.1007/bf01588279.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Maugin, Gérard A., Marcelo Epstein y Carmine Trimarco. "Pseudomomentum and material forces in inhomogeneous materials". International Journal of Solids and Structures 29, n.º 14-15 (1992): 1889–900. http://dx.doi.org/10.1016/0020-7683(92)90180-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Furukawa, Akira y Hajime Tanaka. "Inhomogeneous flow and fracture of glassy materials". Nature Materials 8, n.º 7 (14 de junio de 2009): 601–9. http://dx.doi.org/10.1038/nmat2468.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Kubicki, B. "About endurance limit of ductile inhomogeneous materials". Journal of Materials Science 31, n.º 9 (1996): 2475–79. http://dx.doi.org/10.1007/bf01152964.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Maekawa, S. y J. Inoue. "Giant magneto-transport phenomena in inhomogeneous materials". Materials Science and Engineering: B 31, n.º 1-2 (abril de 1995): 11–16. http://dx.doi.org/10.1016/0921-5107(94)08024-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Goldsmid, H. J. y J. W. Sharp. "The thermal conductivity of inhomogeneous thermoelectric materials". physica status solidi (b) 241, n.º 11 (septiembre de 2004): 2571–74. http://dx.doi.org/10.1002/pssb.200402048.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Qi, Yao, Duo Chen, Chao Sun, Qingyu Hai y Xiaopeng Zhao. "The Influence of Electroluminescent Inhomogeneous Phase Addition on Enhancing MgB2 Superconducting Performance and Magnetic Flux Pinning". Materials 17, n.º 8 (19 de abril de 2024): 1903. http://dx.doi.org/10.3390/ma17081903.

Texto completo
Resumen
As a highly regarded superconducting material with a concise layered structure, MgB2 has attracted significant scientific attention and holds vast potential for applications. However, its limited current-carrying capacity under high magnetic fields has greatly hindered its practical use. To address this issue, we have enhanced the superconducting performance of MgB2 by incorporating inhomogeneous phase nanostructures of p-n junctions with electroluminescent properties. Through temperature-dependent measurements of magnetization, electronic specific heat, and Hall coefficient under various magnetic fields, we have confirmed the crucial role of inhomogeneous phase electroluminescent nanostructures in improving the properties of MgB2. Experimental results demonstrate that the introduction of electroluminescent inhomogeneous phases effectively enhances the superconducting performance of MgB2. Moreover, by controlling the size of the electroluminescent inhomogeneous phases and optimizing grain connectivity, density, and microstructural uniformity, we can further improve the critical temperature (TC) and flux-pinning capability of MgB2 superconducting materials. Comprehensive studies on the physical properties of MgB2 superconducting structures added with p-n junction electroluminescent inhomogeneous phases also confirm the general effectiveness of electroluminescent inhomogeneous phases in enhancing the performance of superconducting materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Kolednik, O., J. Predan, G. X. Shan, N. K. Simha y F. D. Fischer. "On the fracture behavior of inhomogeneous materials––A case study for elastically inhomogeneous bimaterials". International Journal of Solids and Structures 42, n.º 2 (enero de 2005): 605–20. http://dx.doi.org/10.1016/j.ijsolstr.2004.06.064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Wapenaar, Kees y Evert Slob. "Reciprocity and Representations for Wave Fields in 3D Inhomogeneous Parity-Time Symmetric Materials". Symmetry 14, n.º 11 (25 de octubre de 2022): 2236. http://dx.doi.org/10.3390/sym14112236.

Texto completo
Resumen
Inspired by recent developments in wave propagation and scattering experiments with parity-time (PT) symmetric materials, we discuss reciprocity and representation theorems for 3D inhomogeneous PT-symmetric materials and indicate some applications. We start with a unified matrix-vector wave equation which accounts for acoustic, quantum-mechanical, electromagnetic, elastodynamic, poroelastodynamic, piezoelectric and seismoelectric waves. Based on the symmetry properties of the operator matrix in this equation, we derive unified reciprocity theorems for wave fields in 3D arbitrary inhomogeneous media and 3D inhomogeneous media with PT-symmetry. These theorems form the basis for deriving unified wave field representations and relations between reflection and transmission responses in such media. Among the potential applications are interferometric Green’s matrix retrieval and Marchenko-type Green’s matrix retrieval in PT-symmetric materials.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Zhao, Jing, Fei Zhu, Liyou Xu, Yong Tang y Sheng Li. "A homogenization method for nonlinear inhomogeneous elastic materials". Virtual Reality & Intelligent Hardware 3, n.º 2 (abril de 2021): 156–70. http://dx.doi.org/10.1016/j.vrih.2021.01.002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Molchanov, I. S., S. N. Chiu y S. A. Zuyev. "Design of inhomogeneous materials with given structural properties". Physical Review E 62, n.º 4 (1 de octubre de 2000): 4544–52. http://dx.doi.org/10.1103/physreve.62.4544.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Arzamaskova, L. M., E. E. Evdokimov y O. V. Konovalov. "Research of Construction Elements of Structure-inhomogeneous Materials". IOP Conference Series: Materials Science and Engineering 463 (31 de diciembre de 2018): 032074. http://dx.doi.org/10.1088/1757-899x/463/3/032074.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Jiang, Hai, Robert Penno, Krishna M. Pasala, Leo Kempel y Stephan Schneider. "Broadband Microstrip Leaky Wave Antenna With Inhomogeneous Materials". IEEE Transactions on Antennas and Propagation 57, n.º 5 (mayo de 2009): 1558–62. http://dx.doi.org/10.1109/tap.2009.2016785.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Takamatsu, Hiroyuki, Shingo Sumie, Tsutomu Morimoto, Yutaka Kawata, Yoshiro Nishimoto, Takefumi Horiuchi, Hiroshi Nakayama, Takashi Kita y Taneo Nishino. "Theoretical Analysis of Photoacoustic Displacement for Inhomogeneous Materials". Japanese Journal of Applied Physics 33, Part 1, No. 10 (15 de octubre de 1994): 6032–38. http://dx.doi.org/10.1143/jjap.33.6032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Nan, Ce-Wen y G. J. Weng. "Theoretical approach to effective electrostriction in inhomogeneous materials". Physical Review B 61, n.º 1 (1 de enero de 2000): 258–65. http://dx.doi.org/10.1103/physrevb.61.258.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Kadigrobov, A., R. I. Shekhter y M. Jonson. "Triplet superconducting proximity effect in inhomogeneous magnetic materials". Low Temperature Physics 27, n.º 9 (septiembre de 2001): 760–66. http://dx.doi.org/10.1063/1.1401185.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Tosaki, Mitsuo, Daisuke Ohsawa y Yasuhito Isozumi. "Experimental energy straggling of protons in inhomogeneous materials". Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 219-220 (junio de 2004): 241–45. http://dx.doi.org/10.1016/j.nimb.2004.01.061.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía