Artículos de revistas sobre el tema "Inhibitory synapse"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Inhibitory synapse".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Pettem, Katherine L., Daisaku Yokomaku, Hideto Takahashi, Yuan Ge y Ann Marie Craig. "Interaction between autism-linked MDGAs and neuroligins suppresses inhibitory synapse development". Journal of Cell Biology 200, n.º 3 (28 de enero de 2013): 321–36. http://dx.doi.org/10.1083/jcb.201206028.
Texto completoDejanovic, Borislav, Tiffany Wu, Ming-Chi Tsai, David Graykowski, Vineela D. Gandham, Christopher M. Rose, Corey E. Bakalarski et al. "Complement C1q-dependent excitatory and inhibitory synapse elimination by astrocytes and microglia in Alzheimer’s disease mouse models". Nature Aging 2, n.º 9 (20 de septiembre de 2022): 837–50. http://dx.doi.org/10.1038/s43587-022-00281-1.
Texto completoHu, Xiaoge, Jian-hong Luo y Junyu Xu. "The Interplay between Synaptic Activity and Neuroligin Function in the CNS". BioMed Research International 2015 (2015): 1–13. http://dx.doi.org/10.1155/2015/498957.
Texto completoSuckow, Arthur T., Davide Comoletti, Megan A. Waldrop, Merrie Mosedale, Sonya Egodage, Palmer Taylor y Steven D. Chessler. "Expression of Neurexin, Neuroligin, and Their Cytoplasmic Binding Partners in the Pancreatic β-Cells and the Involvement of Neuroligin in Insulin Secretion". Endocrinology 149, n.º 12 (28 de agosto de 2008): 6006–17. http://dx.doi.org/10.1210/en.2008-0274.
Texto completoOverstreet, Linda S. y Gary L. Westbrook. "Synapse Density Regulates Independence at Unitary Inhibitory Synapses". Journal of Neuroscience 23, n.º 7 (1 de abril de 2003): 2618–26. http://dx.doi.org/10.1523/jneurosci.23-07-02618.2003.
Texto completoHines, Pamela J. "Inhibitory synapse specificity". Science 363, n.º 6425 (24 de enero de 2019): 360.6–361. http://dx.doi.org/10.1126/science.363.6425.360-f.
Texto completoJasinska, Malgorzata, Ewa Siucinska, Ewa Jasek, Jan A. Litwin, Elzbieta Pyza y Malgorzata Kossut. "Effect of Associative Learning on Memory Spine Formation in Mouse Barrel Cortex". Neural Plasticity 2016 (2016): 1–11. http://dx.doi.org/10.1155/2016/9828517.
Texto completoJasinska, Malgorzata, Ewa Siucinska, Stansislaw Glazewski, Elzbieta Pyza y And Kossut. "Characterization and plasticity of the double synapse spines in the barrel cortex of the mouse". Acta Neurobiologiae Experimentalis 66, n.º 2 (30 de junio de 2006): 99–104. http://dx.doi.org/10.55782/ane-2006-1595.
Texto completoWilson, Emily S. y Karen Newell-Litwa. "Stem cell models of human synapse development and degeneration". Molecular Biology of the Cell 29, n.º 24 (26 de noviembre de 2018): 2913–21. http://dx.doi.org/10.1091/mbc.e18-04-0222.
Texto completoBarreira da Silva, Rosa, Claudine Graf y Christian Münz. "Cytoskeletal stabilization of inhibitory interactions in immunologic synapses of mature human dendritic cells with natural killer cells". Blood 118, n.º 25 (15 de diciembre de 2011): 6487–98. http://dx.doi.org/10.1182/blood-2011-07-366328.
Texto completoTreanor, Bebhinn, Peter M. P. Lanigan, Sunil Kumar, Chris Dunsby, Ian Munro, Egidijus Auksorius, Fiona J. Culley et al. "Microclusters of inhibitory killer immunoglobulin–like receptor signaling at natural killer cell immunological synapses". Journal of Cell Biology 174, n.º 1 (26 de junio de 2006): 153–61. http://dx.doi.org/10.1083/jcb.200601108.
Texto completoTakesian, Anne E., Vibhakar C. Kotak y Dan H. Sanes. "Age-dependent effect of hearing loss on cortical inhibitory synapse function". Journal of Neurophysiology 107, n.º 3 (febrero de 2012): 937–47. http://dx.doi.org/10.1152/jn.00515.2011.
Texto completoLegendre, P. "The glycinergic inhibitory synapse". Cellular and Molecular Life Sciences 58, n.º 5 (mayo de 2001): 760–93. http://dx.doi.org/10.1007/pl00000899.
Texto completoFlores, Carmen E., Irina Nikonenko, Pablo Mendez, Jean-Marc Fritschy, Shiva K. Tyagarajan y Dominique Muller. "Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation". Proceedings of the National Academy of Sciences 112, n.º 1 (22 de diciembre de 2014): E65—E72. http://dx.doi.org/10.1073/pnas.1411170112.
Texto completoHolmes, William R. y William B. Levy. "Quantifying the Role of Inhibition in Associative Long-Term Potentiation in Dentate Granule Cells With Computational Models". Journal of Neurophysiology 78, n.º 1 (1 de julio de 1997): 103–16. http://dx.doi.org/10.1152/jn.1997.78.1.103.
Texto completoRamaglia, Valeria, Mohit Dubey, M. Alfonso Malpede, Naomi Petersen, Sharon I. de Vries, Shanzeh M. Ahmed, Dennis S. W. Lee et al. "Complement-associated loss of CA2 inhibitory synapses in the demyelinated hippocampus impairs memory". Acta Neuropathologica 142, n.º 4 (25 de junio de 2021): 643–67. http://dx.doi.org/10.1007/s00401-021-02338-8.
Texto completoSu, Jianmin, Jiang Chen, Kumiko Lippold, Aboozar Monavarfeshani, Gabriela Lizana Carrillo, Rachel Jenkins y Michael A. Fox. "Collagen-derived matricryptins promote inhibitory nerve terminal formation in the developing neocortex". Journal of Cell Biology 212, n.º 6 (14 de marzo de 2016): 721–36. http://dx.doi.org/10.1083/jcb.201509085.
Texto completoWoodin, Melanie A., Toshiro Hamakawa, Mayumi Takasaki, Ken Lukowiak y Naweed I. Syed. "Trophic Factor-Induced Plasticity of Synaptic Connections Between Identified Lymnaea Neurons". Learning & Memory 6, n.º 3 (1 de mayo de 1999): 307–16. http://dx.doi.org/10.1101/lm.6.3.307.
Texto completoHoon, Mrinalini, Raunak Sinha, Haruhisa Okawa, Sachihiro C. Suzuki, Arlene A. Hirano, Nicholas Brecha, Fred Rieke y Rachel O. L. Wong. "Neurotransmission plays contrasting roles in the maturation of inhibitory synapses on axons and dendrites of retinal bipolar cells". Proceedings of the National Academy of Sciences 112, n.º 41 (29 de septiembre de 2015): 12840–45. http://dx.doi.org/10.1073/pnas.1510483112.
Texto completoELMARIAH, SARINA B., ETHAN G. HUGHES, EUN JOO OH y RITA J. BALICE-GORDON. "Neurotrophin signaling among neurons and glia during formation of tripartite synapses". Neuron Glia Biology 1, n.º 4 (noviembre de 2004): 339–49. http://dx.doi.org/10.1017/s1740925x05000189.
Texto completoJasinska, Malgorzata, Anna Grzegorczyk, Ewa Jasek, Jan Litwin, Malgorzata Kossut, Grazyna Barbacka-Surowiak y Elzbieta Pyza. "Daily rhythm of synapse turnover in mouse somatosensory cortex". Acta Neurobiologiae Experimentalis 74, n.º 1 (31 de marzo de 2014): 104–10. http://dx.doi.org/10.55782/ane-2014-1977.
Texto completoKo, Jaewon, Gilberto J. Soler-Llavina, Marc V. Fuccillo, Robert C. Malenka y Thomas C. Südhof. "Neuroligins/LRRTMs prevent activity- and Ca2+/calmodulin-dependent synapse elimination in cultured neurons". Journal of Cell Biology 194, n.º 2 (25 de julio de 2011): 323–34. http://dx.doi.org/10.1083/jcb.201101072.
Texto completoWoo, Jooyeon, Seok-Kyu Kwon, Jungyong Nam, Seungwon Choi, Hideto Takahashi, Dilja Krueger, Joohyun Park et al. "The adhesion protein IgSF9b is coupled to neuroligin 2 via S-SCAM to promote inhibitory synapse development". Journal of Cell Biology 201, n.º 6 (10 de junio de 2013): 929–44. http://dx.doi.org/10.1083/jcb.201209132.
Texto completoLevinson, Joshua N. y Alaa El-Husseini. "New Players Tip the Scales in the Balance between Excitatory and Inhibitory Synapses". Molecular Pain 1 (1 de enero de 2005): 1744–8069. http://dx.doi.org/10.1186/1744-8069-1-12.
Texto completoThakar, Sonal, Liqing Wang, Ting Yu, Mao Ye, Keisuke Onishi, John Scott, Jiaxuan Qi et al. "Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation". Proceedings of the National Academy of Sciences 114, n.º 4 (5 de enero de 2017): E610—E618. http://dx.doi.org/10.1073/pnas.1612062114.
Texto completoLee, Sang-Eun, Yoonju Kim, Jeong-Kyu Han, Hoyong Park, Unghwi Lee, Myeongsu Na, Soomin Jeong, ChiHye Chung, Gianluca Cestra y Sunghoe Chang. "nArgBP2 regulates excitatory synapse formation by controlling dendritic spine morphology". Proceedings of the National Academy of Sciences 113, n.º 24 (25 de mayo de 2016): 6749–54. http://dx.doi.org/10.1073/pnas.1600944113.
Texto completoOjima, Daiki, Yoko Tominaga, Takashi Kubota, Atsushi Tada, Hiroo Takahashi, Yasushi Kishimoto, Takashi Tominaga y Tohru Yamamoto. "Impaired Hippocampal Long-Term Potentiation and Memory Deficits upon Haploinsufficiency of MDGA1 Can Be Rescued by Acute Administration of d-Cycloserine". International Journal of Molecular Sciences 25, n.º 17 (6 de septiembre de 2024): 9674. http://dx.doi.org/10.3390/ijms25179674.
Texto completoApollonio, Benedetta, Mariam Fanous, Mohamed-Reda Benmebarek, Stephen Devereux, Patrick Hagner, Michael Pourdehnad, Anita K. Gandhi, Piers E. Patten y Alan G. Ramsay. "CC-122 Repairs T Cell Activation in Chronic Lymphocytic Leukemia That Results in a Concomitant Increase in PD-1:PD-L1 and CTLA-4 Immune Checkpoint Expression at the Immunological Synapse". Blood 126, n.º 23 (3 de diciembre de 2015): 1738. http://dx.doi.org/10.1182/blood.v126.23.1738.1738.
Texto completoIshibashi, Masaru, Kiyoshi Egawa y Atsuo Fukuda. "Diverse Actions of Astrocytes in GABAergic Signaling". International Journal of Molecular Sciences 20, n.º 12 (18 de junio de 2019): 2964. http://dx.doi.org/10.3390/ijms20122964.
Texto completoZhang, Lulu, Yongzhi Zhang, Furong Liu, Qingyuan Chen, Yangbo Lian y Quanlong Ma. "On-Chip Photonic Synapses with All-Optical Memory and Neural Network Computation". Micromachines 14, n.º 1 (27 de diciembre de 2022): 74. http://dx.doi.org/10.3390/mi14010074.
Texto completoWichmann, Carolin y Thomas Kuner. "Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences". Physiological Reviews 102, n.º 1 (1 de enero de 2022): 269–318. http://dx.doi.org/10.1152/physrev.00039.2020.
Texto completoKuljis, Dika A., Kristina D. Micheva, Ajit Ray, Waja Wegner, Ryan Bowman, Daniel V. Madison, Katrin I. Willig y Alison L. Barth. "Gephyrin-Lacking PV Synapses on Neocortical Pyramidal Neurons". International Journal of Molecular Sciences 22, n.º 18 (17 de septiembre de 2021): 10032. http://dx.doi.org/10.3390/ijms221810032.
Texto completoGonzalez-Burgos, Guillermo, Diana C. Rotaru, Aleksey V. Zaitsev, Nadezhda V. Povysheva y David A. Lewis. "GABA Transporter GAT1 Prevents Spillover at Proximal and Distal GABA Synapses Onto Primate Prefrontal Cortex Neurons". Journal of Neurophysiology 101, n.º 2 (febrero de 2009): 533–47. http://dx.doi.org/10.1152/jn.91161.2008.
Texto completoHarrison, John M., Richard G. Allen, Michael J. Pellegrino, John T. Williams y Olivier J. Manzoni. "Chronic Morphine Treatment Alters Endogenous Opioid Control of Hippocampal Mossy Fiber Synaptic Transmission". Journal of Neurophysiology 87, n.º 5 (1 de mayo de 2002): 2464–70. http://dx.doi.org/10.1152/jn.2002.87.5.2464.
Texto completoQian, N. y T. J. Sejnowski. "When is an inhibitory synapse effective?" Proceedings of the National Academy of Sciences 87, n.º 20 (1 de octubre de 1990): 8145–49. http://dx.doi.org/10.1073/pnas.87.20.8145.
Texto completoPEREIRA, T., M. S. BAPTISTA, J. KURTHS y M. B. REYES. "ONSET OF PHASE SYNCHRONIZATION IN NEURONS WITH CHEMICAL SYNAPSE". International Journal of Bifurcation and Chaos 17, n.º 10 (octubre de 2007): 3545–49. http://dx.doi.org/10.1142/s0218127407019342.
Texto completoGrimes, William N., Jun Zhang, Hua Tian, Cole W. Graydon, Mrinalini Hoon, Fred Rieke y Jeffrey S. Diamond. "Complex inhibitory microcircuitry regulates retinal signaling near visual threshold". Journal of Neurophysiology 114, n.º 1 (julio de 2015): 341–53. http://dx.doi.org/10.1152/jn.00017.2015.
Texto completoZhao, Qing-Tai, Fengben Xi, Yi Han, Andreas Grenmyr, Jin Hee Bae y Detlev Gruetzmacher. "Ferroelectric Devices for Neuromorphic Computing". ECS Meeting Abstracts MA2022-02, n.º 32 (9 de octubre de 2022): 1183. http://dx.doi.org/10.1149/ma2022-02321183mtgabs.
Texto completoFenyves, Bánk G., Gábor S. Szilágyi, Zsolt Vassy, Csaba Sőti y Peter Csermely. "Synaptic polarity and sign-balance prediction using gene expression data in the Caenorhabditis elegans chemical synapse neuronal connectome network". PLOS Computational Biology 16, n.º 12 (21 de diciembre de 2020): e1007974. http://dx.doi.org/10.1371/journal.pcbi.1007974.
Texto completoLee, Seong-Eun y Gum Hwa Lee. "Reelin Affects Signaling Pathways of a Group of Inhibitory Neurons and the Development of Inhibitory Synapses in Primary Neurons". International Journal of Molecular Sciences 22, n.º 14 (13 de julio de 2021): 7510. http://dx.doi.org/10.3390/ijms22147510.
Texto completoBao, Shaowen, Lu Chen, Xiaoxi Qiao y Richard F. Thompson. "Transgenic Brain-Derived Neurotrophic Factor Modulates a Developing Cerebellar Inhibitory Synapse". Learning & Memory 6, n.º 3 (1 de mayo de 1999): 276–83. http://dx.doi.org/10.1101/lm.6.3.276.
Texto completoGardner, D. "Sets of synaptic currents paired by common presynaptic or postsynaptic neurons". Journal of Neurophysiology 61, n.º 4 (1 de abril de 1989): 845–53. http://dx.doi.org/10.1152/jn.1989.61.4.845.
Texto completoAli, Heba, Lena Marth y Dilja Krueger-Burg. "Neuroligin-2 as a central organizer of inhibitory synapses in health and disease". Science Signaling 13, n.º 663 (22 de diciembre de 2020): eabd8379. http://dx.doi.org/10.1126/scisignal.abd8379.
Texto completoUnda, Brianna K., Vickie Kwan y Karun K. Singh. "Neuregulin-1 Regulates Cortical Inhibitory Neuron Dendrite and Synapse Growth through DISC1". Neural Plasticity 2016 (2016): 1–15. http://dx.doi.org/10.1155/2016/7694385.
Texto completoTate, Kinsley, Brenna Kirk, Alisia Tseng, Abigail Ulffers y Karen Litwa. "Effects of the Selective Serotonin Reuptake Inhibitor Fluoxetine on Developing Neural Circuits in a Model of the Human Fetal Cortex". International Journal of Molecular Sciences 22, n.º 19 (28 de septiembre de 2021): 10457. http://dx.doi.org/10.3390/ijms221910457.
Texto completoRYBICKA, KRYSTYNA KIELAN y SUSAN B. UDIN. "Connections of contralaterally projecting isthmotectal axons and GABA-immunoreactive neurons in Xenopus tectum: An ultrastructural study". Visual Neuroscience 22, n.º 3 (mayo de 2005): 305–15. http://dx.doi.org/10.1017/s0952523805223064.
Texto completoLevinson, Joshua N., Nadège Chéry, Kun Huang, Tak Pan Wong, Kimberly Gerrow, Rujun Kang, Oliver Prange, Yu Tian Wang y Alaa El-Husseini. "Neuroligins Mediate Excitatory and Inhibitory Synapse Formation". Journal of Biological Chemistry 280, n.º 17 (21 de febrero de 2005): 17312–19. http://dx.doi.org/10.1074/jbc.m413812200.
Texto completoSakimoto, Yuya, Paw Min-Thein Oo, Makoto Goshima, Itsuki Kanehisa, Yutaro Tsukada y Dai Mitsushima. "Significance of GABAA Receptor for Cognitive Function and Hippocampal Pathology". International Journal of Molecular Sciences 22, n.º 22 (18 de noviembre de 2021): 12456. http://dx.doi.org/10.3390/ijms222212456.
Texto completoNiraula, Suraj, Shirley ShiDu Yan y Jaichandar Subramanian. "Amyloid pathology impairs experience-dependent inhibitory synaptic plasticity". Journal of Neuroscience, 27 de noviembre de 2023, JN—RM—0702–23. http://dx.doi.org/10.1523/jneurosci.0702-23.2023.
Texto completoBoxer, Emma E. y Jason Aoto. "Neurexins and their ligands at inhibitory synapses". Frontiers in Synaptic Neuroscience 14 (21 de diciembre de 2022). http://dx.doi.org/10.3389/fnsyn.2022.1087238.
Texto completo