Tesis sobre el tema "Inhibitory synapse"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 42 mejores tesis para su investigación sobre el tema "Inhibitory synapse".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Berry, Kalen P. (Kalen Paul). "Visualizing inhibitory and excitatory synapse dynamics In vivo". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/117876.
Texto completoCataloged from PDF version of thesis. Page 75 blank.
Includes bibliographical references (pages 66-74).
Structural plasticity is one of the physical manifestations of circuit rewiring in the brain. Once thought to be relegated solely to developmental time periods, we now know that even in the mature brain inhibitory or excitatory connections can be made and broken, modifying the information flow within a circuit by enabling or removing specific information channels. However, the properties of inhibitory and excitatory synapse dynamics are not well understood. To address this issue, we utilized triple-color two photon microscopy to examine inhibitory and excitatory synapses across time with daily imaging. We found that the majority of dynamic spines at these intervals lacked a mature excitatory synapse as indicated by the absence of PSD-95. Inhibitory synapses were also highly dynamic during daily imaging, much more so than expected from previous results imaging at longer intervals, especially those located on spines which also contain an excitatory synapse. Surprisingly, we found that many inhibitory synapses, on the dendritic shaft and on spines, were also repeatedly removed and then reformed again at the same locations on the dendritic arbor. These recurrent inhibitory dynamic events at persistent locations represent a novel role for synapse dynamics, modulating local excitatory activity via their addition or removal. The rate of inhibitory synapse turnover was also modified by experience, as shown through their responses following monocular deprivation. We further sought to investigate these events on even shorter time scales by developing a dual color labeling strategy in combination with a newly developed line scanning temporal focusing two photon microscope, enabling imaging of the entire dendritic arbor and its inhibitory synapses in just a few minutes. This system allows for examination of synapse dynamics on the hourly time scale in vivo and can be expanded to study other molecular events that occur too fast for conventional two photon imaging.
by Kalen P. Berry.
Ph. D.
Sheehan, D. "Membrane dynamics of neuroligin 2 at the inhibitory synapse". Thesis, University College London (University of London), 2015. http://discovery.ucl.ac.uk/1470159/.
Texto completoMardinly, Alan Robert. "Regulation of Synapse Development by Activity Dependent Transcription in Inhibitory Neurons". Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10739.
Texto completoDietrich, Craig Julius. "Endogenous acidification of the inhibitory synapse proton amplification of GABAA-mediated neurotransmission /". Connect to Electronic Thesis (CONTENTdm), 2009. http://worldcat.org/oclc/457179973/viewonline.
Texto completoDobie, Frederick Andrew. "Molecular and cellular mechanisms of inhibitory synapse formation in developing rat hippocampal neurons". Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/41933.
Texto completoPettem, Katherine Laura. "New synaptic organizing proteins and their roles in excitatory and inhibitory synapse development". Thesis, University of British Columbia, 2012. http://hdl.handle.net/2429/42478.
Texto completoMerlaud, Zaha. "Nouveaux mécanismes de régulation de la synapse GABAergique inhibitrice de l’hippocampe : implication de la voie de signalisation WNK et de l’état de conformation des récepteurs GABA-A". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS301.pdf.
Texto completoThe chloride ion permeant ionotropic γ-aminobutyric acid receptor (GABAAR) is the principal neurotransmitter receptor mediating inhibition in the mammalian brain. The GABAergic GABAergic transmission is subjected to a complex and multifactorial regulation. Shaped by the gating cycle of GABAAR, which dictates the switch between their resting, open, and desensitized conformation and by chloride homeostasis which dictates the polarity and efficacy of the GABAergic transmission, the GABAergic transmission also relies heavily on the number of GABAARs present in the postsynaptic membrane opposite to presynaptic GABA-releasing sites. The number of GABAARs at synapses is rapidly regulated by a “diffusion-capture” mechanism wherein receptors alternate between rapid diffusion into the extrasynaptic plasma membrane and slowing down and confinement to the synapses. This confinement and synaptic aggregation are mediated by the interaction between GABAARs and their primary scaffolding protein at the synapse, gephyrin. Regulation of receptor lateral diffusion is considered the first mechanism for adjusting the number of receptors at synapses in response to synaptic demand. Neuronal activity regulates the lateral diffusion of GABAARs, particularly by controlling receptor binding to gephyrin through the modulation of receptor and/or gephyrin phosphorylation downstream of kinase cascades, which subsequently influences the conformation of these proteins. During my PhD, I have investigated the dynamic regulation of GABAergic synapses in the hippocampus through the lens of gephyrin phosphorylation and receptor conformation, using state of the art optical microscopy techniques, such as Single Particle Tracking (SPT), STochastic Optical Reconstruction Microscopy (STORM) or Photo-Activated Localization Microscopy (PALM), and relying on pharmacological and directed mutagenesis strategies in vitro and in vivo. More specifically, my research suggests that GABAergic synapses in the hippocampus are dynamically regulated, with modulation of GABAAR and gephyrin synaptic organization mediated by gephyrin phosphorylation through the chloride-sensitive WNK/SPAK/OSR1 signaling pathway, a kinase cascade previously linked to chloride homeostasis and inhibitory transmission. Additionally, my findings indicate that the conformation state of GABAARs impacts their dynamic regulation and organization at the synapse. Overall, my doctoral work provides new insights into the dynamic regulation of GABAergic synapses organization and function in the mature hippocampus of murine models
Ramos, Mariana. "Unraveling the impact of IL1RAPL1 mutations on synapse formation : towards potential therapies for intellectual disability". Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015PA05T036/document.
Texto completoPreserving the integrity of neuronal synapses is important for the development and maintenance of cognitive capacities. Mutations on a growing number of genes coding for synaptic proteins are associated with intellectual disability (ID), a neurodevelopmental disease characterized by deficits in adaptive and intellectual functions. The present work is dedicated to the study of one of those genes, IL1RAPL1, and the role of its encoding protein in synapse formation and function. IL1RAPL1 is a trans-membrane protein that is localized at excitatory synapses, where it interacts with the postsynaptic proteins PSD-95, RhoGAP2 and Mcf2l. Moreover, the extracellular domain of IL1RAPL1 interacts trans-synaptically with the presynaptic phosphatase PTPd. We studied the functional consequences of two novel mutations identified in ID patients affecting this IL1RAPL1 domain. Those mutations lead either to a decrease of the protein expression or of its interaction with PTPd, affecting in both cases the IL1RAPL1-mediated excitatory synapse formation. In the absence of IL1RAPL1, the number or function of excitatory synapses is perturbed, leading to an imbalance of excitatory and inhibitory synaptic transmissions in specific brain circuits. In particular, we showed that this imbalance in the lateral amygdala results in associative memory deficits in mice lacking Il1rapl1. Altogether, the results included in this work show that IL1RAPL1/PTPd interaction is essential for synapse formation and suggest that the cognitive deficits in ID patients with mutations on IL1RAPL1 result from the imbalance of the excitatory and inhibitory transmission. These observations open therapeutic perspectives aiming to reestablish this balance in the affected neuronal circuits
Salvatico, Charlotte. "Mécanisme de diffusion-capture dans les synapses inhibitrices : suivi en molécule unique à haute densité et aspects thermodynamiques". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066736/document.
Texto completoThe synapse is a macromolecular structure whose components are constantly renewed while the assembly remains quasi-stable. At the mesoscopic level, neurotransmitter receptors (RNs) accumulate in the post-synaptic compartment (PSD). This accumulation is the result of the lateral diffusion of RNs in the neuronal membrane and transient immobilization within the PSD. This mechanism, called diffusion-trapping has been highlighted by single-molecule-tracking techniques. Scaffold proteins (PE) are localized under the post-synaptic membrane. These proteins form trapping-sites by interacting with RNs. Through an interdisciplinary approach in collaboration with chemists and physicists, the aim of my doctoral research was to understand the parameters that are involved in diffusion-trapping mechanisms. We especially focused on glycine receptor (RGly) trapping by PE clusters at inhibitory synapses, namely the scaffold protein gephyrin. The gephyrin- interaction motif of the GlyR is located within the cytoplasmic domain of the β-subunit of the receptor, the so-called β-loop. Two aspects of the impact of RGly-gephyrin binding on diffusion-trapping were studied. The first was to identify the source of the RGly-gephyrin bimodal binding. The second one addressed the regulation of gephyrin binding by phosphorylation of the GlyR βLoop.My research thus shows that it is now possible to quantify thermodynamic aspects of molecular interactions in living cells using high-density single-molecule-tracking
Mosser, Coralie-Anne. "Implication des cellules microgliales dans le développement des réseaux synaptiques du néocortex somatosensoriel Microglial BDNF promotes the functional maturation of thalamocortical synaptic networks Microglia and prenatal inflammation regulate local and horizontal wiring of inhibitory circuits". Thesis, Sorbonne Paris Cité, 2018. https://wo.app.u-paris.fr/cgi-bin/WebObjects/TheseWeb.woa/wa/show?t=2167&f=13404.
Texto completoMicroglial cells are a population of specialized macrophages residing in the CNS only. They have long been studied solely under pathological contexts and were thought to be active only upon homeostatic disturbance following a brain lesion. However, over the last decade, they have been increasingly recognized to be essential players in the physiological functioning of the CNS. Specifically, during the CNS formation, microglia has been shown to regulate apoptosis and neuronal survival. They are also able to directly interact with synapses, by eliminating supernumerary and inappropriate connections, by promoting synapse formation or by regulating their activity. However, mechanisms by which microglia influence wiring and functional maturation of cortical are not fully understood. To better assess the role of microglia in cortical development, we used the barrel field as a model of neuronal development and we combined in vivo manipulations together with electrophysiology, optogenetics, pharmacologic and histologic approaches on brain slices of genetically-engineered mice. We first explored the consequences of microglia entry near the terminals of thalamic afferents (center of the barrels) in the primary somatosensory cortex during the first postnatal week on functional properties of thalamocortical synapses and associated disynaptic feedforward inhibition. By selectively depleting microglia at early postnatal days by intracerebral injections of clodronate-encapsulated liposomes, we show that microglia absence during the first postnatal week delays the functional maturation of both monosynaptic thalamocortical synapse and feedforward inhibition of layer 4 principal cells of the barrel cortex (PC) up to the 10th and 12th postnatal days (P10-12). To identify the mechanism underlying this process, we used the CX3CR1+/CreERT2; BDNFlox/lox mouse line allowing the conditional deletion of microglial BDNF during the first postnatal week. Our recordings indicate that the absence of microglial BDNF, as well as early microglia depletion, leads to a deficit in the functional maturation of both monosynaptic excitatory and disynaptic inhibitory thalamocortical connexions between P10-12. We therefore identified a microglial key factor in the maturation of cortical synapses. Our recordings in the young adult suggest that early microglial BDNF deletion has a long-term effect on thalamocortical excitatory synapses. In a second study, we investigated the consequences of microglia dysfunction during embryonic development on cortical networks wiring. Maternal immune activation (MIA) triggered by bacterial lipopolysaccharide (LPS) injection modifies the laminar repartition of parvalbumin-expressing inhibitory interneurons (PV+), key actors in neuropsychiatric disease, in the cortex until P20. Our functional data revealed that these MIA and depletion protocols lead to an increase of layer 4 PC perisomatic inhibition at P20, as well as a horizontal exuberance of cortical inhibition supported by PV+ interneurons. This increased inhibition does not last within development as suggested by our recordings in the adult. On the opposite, it seems that MIA and early microglia depletion result in weaker inhibitory synapses at P60. To conclude, we postulate that microglial cells are the missing link between maternal immune challenge and à higher risk of having neurodevelopmental pathologies like autism or schizophrenia. Our results highlight the crucial role of microglial cells in neuronal network development during perinatal period
Nicholson, Martin William. "Diazepam-dependent modulation of GABAergic inhibitory synapses". Thesis, University College London (University of London), 2018. http://discovery.ucl.ac.uk/10046265/.
Texto completoMOSCHETTA, MATTEO. "Removal of the calcium-dependent regulation of ATP binding in Synapsin I has distinct effects at excitatory and inhibitory synapses". Doctoral thesis, Università degli studi di Genova, 2020. http://hdl.handle.net/11567/993830.
Texto completoVilla, Katherine L. (Katherine Leigh). "Inhibitory synapses are repeatedly assembled and removed at persistent sites in vivo". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/103167.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis. "February 2016."
Includes bibliographical references (pages 113-123).
Structural plasticity, the rewiring of synaptic connections, occurs not only during development, but is prevalent in the adult brain and likely represents the physical correlate of learning and memory. Removal or addition of excitatory and inhibitory synaptic inputs onto a neuron can affect their relative influence on excitation in specific dendritic segments, and ultimately regulate neuronal firing. However, the structural dynamics of excitatory and inhibitory synapses in vivo, and their relation to each other, is not well understood. To gain insight into synaptic remodeling in the adult brain in vivo, we used dual- and triple- color two-photon imaging to track the dynamics of all inhibitory and excitatory synapses onto a given neuron in the cerebral cortex at different timescales. By studying synaptic changes over 4-day or 24-hour intervals we were able to determine that inhibitory synapses are remarkably dynamic in vivo. We found that Inhibitory synapses occur not only on the dendritic shaft, but also a significant fraction is present on dendritic spines, alongside an excitatory synapse. Inhibitory synapses on these dually innervated spines are remarkably dynamic and in stark contrast to the stability of excitatory synapses on the same spines. Many of the inhibitory synapses on dendritic spines repeatedly disappear and reappear in the same location. These reversible structural dynamics indicate a fundamentally new role for inhibitory synaptic remodeling - flexible, input-specific modulation of stable excitatory connections. To determine whether synapse dynamics are regulated by experience-dependent plasticity, we performed monocular deprivation, finding that an ocular dominance shift reduces inhibitory synaptic lifetime and increases recurrence. To investigate the molecular mechanism of rapid inhibitory synapse appearance and removal, I am currently testing molecular interventions that influence the clustering of gephyrin, a scaffolding molecule that anchors inhibitory receptors at postsynaptic sites.
by Katherine L. Villa.
Ph. D.
Desai, Kshipra. "The role of a collybistin-kinesin complex in gephyrin trafficking to inhibitory synapses". Thesis, University College London (University of London), 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.429600.
Texto completoHe, Qionger. "Rebound potentiation : long-term potentiation of inhibitory transmission at cerebellar interneuron-Purkinje cell synapses". Thesis, University College London (University of London), 2009. http://discovery.ucl.ac.uk/17254/.
Texto completoRUBEN, MASSIMO. "Coordination in space and time of excitatory and inhibitory synaptic plasticity at dendritic synapses". Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1044902.
Texto completoCamiré, Olivier y Olivier Camiré. "Ca²+ mechanisms of synaptic integration and plasticity in inhibitory interneurons". Doctoral thesis, Université Laval, 2019. http://hdl.handle.net/20.500.11794/37039.
Texto completoTableau d'honneur de la FÉSP
La signalisation calcique dendritique joue un rôle important dans la régulation de mécanismes neuronaux, tels que la plasticité synaptique et l’intégration de l’information transmise. Bien compris chez les neurones principaux, ce processus de régulation est moins étudié chez les divers types d’interneurones GABAergiques qui modulent l’acquisition et l’envoi de signaux neuronaux. Chez les interneurones à décharge rapide, un type d’interneurone commun dans les circuits corticaux, il a été démontré qu’il y a absence de rétropropagation des potentiels d’action dans les dendrites distales (Hu et al., 2010). Cette découverte a des implications fonctionnelles, car la rétropropagation des potentiels d’action est un signal important pour l’induction des formes de plasticité synaptique hebbiennes. Par contre, il a été suggéré que l’activité dendritique locale pourrait compenser pour l’absence de rétropropagation des potentiels d’action. En conséquence, ce travail porte sur l’étude des évènements calciques dans les dendrites distales des interneurones à décharge rapide. Nous avons cherché à déterminer s’il est possible de générer ces signaux calciques par stimulation dendritique locale, à étudier les mécanismes responsables de ces signaux et à déterminer si ces signaux jouent un rôle dans la régulation de la plasticité synaptique à ces synapses. Pour atteindre ces objectifs, nous avons utilisé une combinaison de méthodes électrophysiologiqes (patch-clamp en mode cellule entière), d’imagerie calcique deux-photons et de modélisation computationnelle. Nous avons pu établir qu’il est possible de générer des évènements calciques postsynaptiques supralinéaires dans les synapses excitatrices étudiées par stimulation électrique locale. Ces signaux sont médiés par l’influx calcique provenant de l’activation des récepteurs AMPA perméables au Ca2+, qui déclenche à son tour le relâchement de Ca2+ par les récepteurs ryanodine présents sur réserves calciques intracellulaires. Ces signaux comprennent aussi une contribution calcique mineure des récepteurs NMDA, et ils restent locaux (pas de propagation dans l’arbre dendritique). De plus, nous avons déterminé que ces évènements calciques supralinéaires produisent un revirement de la plasticité synaptique, car ils induisent la dépression à long-terme dans les synapses étudiées, alors que les signaux calciques de basse amplitude induisent la potentiation à long-terme. Nous avons aussi examiné si ces évènements calciques supralinéaires étaient générés de façon équivalente dans les dendrites apicales et basales, qui reçoivent des synapses de différentes sources. Nous avons observé que les signaux des dendrites apicales avaient une plus grande amplitude et étaient associés à un plus haut niveau de dépolarisation. À partir de la modélisation, nous avons pu prédire le nombre de synapses nécessaires à la génération de ces signaux et la contribution potentielle des mécanismes d’extrusion du Ca2+. Finalement, nous avons étudié la spécificité cellulaire des mécanismes d’intégration dendritique en combinant l’imagerie calcique et la modélisation dans un type différent d’interneurone, les interneurones spécifiques aux interneurones type III. En conclusion, nous avons prouvé qu’il existe dans certains interneurones des mécanismes alternatifs, médiés par des hausses de Ca2+ locales, permettant la régulation de la plasticité aux synapses excitatrices.
La signalisation calcique dendritique joue un rôle important dans la régulation de mécanismes neuronaux, tels que la plasticité synaptique et l’intégration de l’information transmise. Bien compris chez les neurones principaux, ce processus de régulation est moins étudié chez les divers types d’interneurones GABAergiques qui modulent l’acquisition et l’envoi de signaux neuronaux. Chez les interneurones à décharge rapide, un type d’interneurone commun dans les circuits corticaux, il a été démontré qu’il y a absence de rétropropagation des potentiels d’action dans les dendrites distales (Hu et al., 2010). Cette découverte a des implications fonctionnelles, car la rétropropagation des potentiels d’action est un signal important pour l’induction des formes de plasticité synaptique hebbiennes. Par contre, il a été suggéré que l’activité dendritique locale pourrait compenser pour l’absence de rétropropagation des potentiels d’action. En conséquence, ce travail porte sur l’étude des évènements calciques dans les dendrites distales des interneurones à décharge rapide. Nous avons cherché à déterminer s’il est possible de générer ces signaux calciques par stimulation dendritique locale, à étudier les mécanismes responsables de ces signaux et à déterminer si ces signaux jouent un rôle dans la régulation de la plasticité synaptique à ces synapses. Pour atteindre ces objectifs, nous avons utilisé une combinaison de méthodes électrophysiologiqes (patch-clamp en mode cellule entière), d’imagerie calcique deux-photons et de modélisation computationnelle. Nous avons pu établir qu’il est possible de générer des évènements calciques postsynaptiques supralinéaires dans les synapses excitatrices étudiées par stimulation électrique locale. Ces signaux sont médiés par l’influx calcique provenant de l’activation des récepteurs AMPA perméables au Ca2+, qui déclenche à son tour le relâchement de Ca2+ par les récepteurs ryanodine présents sur réserves calciques intracellulaires. Ces signaux comprennent aussi une contribution calcique mineure des récepteurs NMDA, et ils restent locaux (pas de propagation dans l’arbre dendritique). De plus, nous avons déterminé que ces évènements calciques supralinéaires produisent un revirement de la plasticité synaptique, car ils induisent la dépression à long-terme dans les synapses étudiées, alors que les signaux calciques de basse amplitude induisent la potentiation à long-terme. Nous avons aussi examiné si ces évènements calciques supralinéaires étaient générés de façon équivalente dans les dendrites apicales et basales, qui reçoivent des synapses de différentes sources. Nous avons observé que les signaux des dendrites apicales avaient une plus grande amplitude et étaient associés à un plus haut niveau de dépolarisation. À partir de la modélisation, nous avons pu prédire le nombre de synapses nécessaires à la génération de ces signaux et la contribution potentielle des mécanismes d’extrusion du Ca2+. Finalement, nous avons étudié la spécificité cellulaire des mécanismes d’intégration dendritique en combinant l’imagerie calcique et la modélisation dans un type différent d’interneurone, les interneurones spécifiques aux interneurones type III. En conclusion, nous avons prouvé qu’il existe dans certains interneurones des mécanismes alternatifs, médiés par des hausses de Ca2+ locales, permettant la régulation de la plasticité aux synapses excitatrices.
Dendritic Ca2+ signaling plays an important role in the regulation of neuronal processes, such as synaptic plasticity and input integration. Well-studied in principal neurons, this form of regulation is not well understood in the various types of GABAergic interneurons that modulate activity in neuronal networks. In fastspiking (FS) interneurons, a common interneuron type in cortical circuits, it has been shown that there is a lack of action potential (AP) backpropagation in distal dendrites (Hu et al., 2010). This discovery has functional implications, AP backpropagation is an important signal for the induction of Hebbian forms of synaptic plasticity. However, it has been suggested that local dendritic activity could compensate for the absence of AP backpropagation. Consequently, this work focuses on the study of Ca2+ transients in distal dendrites of FS interneurons. We sought to determine whether it is possible to generate supralinear Ca2+ transients through local dendritic stimulation, to study the mechanisms responsible for those transients and to determine whether those signals play a role in the regulation of synaptic plasticity at those synapses. To reach those objectives, we used a combination of electrophysiological methods (whole-cell patch-clamp recordings), two-photon Ca2+ imaging and of computational modeling. We were able to establish that supralinear postsynaptic Ca2+ transients can be generated through local electrical stimulation of excitatory synapses in distal dendrites. These Ca2+ transients were mediated by Ca2+ influx from the activation of Ca2+-permeable AMPA receptors, which triggers Ca2+ release through ryanodine receptors present on intracellular Ca2+ stores (Ca2+-induced Ca2+ release). These Ca2+ signals also contain a minor contribution from NMDA receptors, and stay localized (no significant propagation in the dendritic arbor). In addition, we determined that these supralinear Ca2+ signals constitute a switch in the expression of synaptic plasticity, as they induce long-term depression in local synapses, while low-amplitude Ca2+ signals induced synaptic long-term potentiation. We also examined whether these supralinear Ca2+ transients were generated in both apical and basal dendrites, which receive synaptic contacts from different sources (Schaffer collaterals vs local collaterals). We observed that Ca2+ transients in apical dendrites had a higher amplitude and were associated with a higher level of somatic depolarization. We were also able to predict, through computational modeling, the number of synapses necessary to the generation of those signals and the potential contribution of Ca2+ extrusion mechanisms. Finally, we studied the cell-specificity of dendritic integration mechanisms by combining Ca2+ imaging and modeling in a different interneuron type, interneuron-specific interneurons type III. In conclusion, we were able to prove that certain interneurons possess alternative mechanisms, mediated through local Ca2+ transients, that allow for the regulation of plasticity at excitatory synapses.
Dendritic Ca2+ signaling plays an important role in the regulation of neuronal processes, such as synaptic plasticity and input integration. Well-studied in principal neurons, this form of regulation is not well understood in the various types of GABAergic interneurons that modulate activity in neuronal networks. In fastspiking (FS) interneurons, a common interneuron type in cortical circuits, it has been shown that there is a lack of action potential (AP) backpropagation in distal dendrites (Hu et al., 2010). This discovery has functional implications, AP backpropagation is an important signal for the induction of Hebbian forms of synaptic plasticity. However, it has been suggested that local dendritic activity could compensate for the absence of AP backpropagation. Consequently, this work focuses on the study of Ca2+ transients in distal dendrites of FS interneurons. We sought to determine whether it is possible to generate supralinear Ca2+ transients through local dendritic stimulation, to study the mechanisms responsible for those transients and to determine whether those signals play a role in the regulation of synaptic plasticity at those synapses. To reach those objectives, we used a combination of electrophysiological methods (whole-cell patch-clamp recordings), two-photon Ca2+ imaging and of computational modeling. We were able to establish that supralinear postsynaptic Ca2+ transients can be generated through local electrical stimulation of excitatory synapses in distal dendrites. These Ca2+ transients were mediated by Ca2+ influx from the activation of Ca2+-permeable AMPA receptors, which triggers Ca2+ release through ryanodine receptors present on intracellular Ca2+ stores (Ca2+-induced Ca2+ release). These Ca2+ signals also contain a minor contribution from NMDA receptors, and stay localized (no significant propagation in the dendritic arbor). In addition, we determined that these supralinear Ca2+ signals constitute a switch in the expression of synaptic plasticity, as they induce long-term depression in local synapses, while low-amplitude Ca2+ signals induced synaptic long-term potentiation. We also examined whether these supralinear Ca2+ transients were generated in both apical and basal dendrites, which receive synaptic contacts from different sources (Schaffer collaterals vs local collaterals). We observed that Ca2+ transients in apical dendrites had a higher amplitude and were associated with a higher level of somatic depolarization. We were also able to predict, through computational modeling, the number of synapses necessary to the generation of those signals and the potential contribution of Ca2+ extrusion mechanisms. Finally, we studied the cell-specificity of dendritic integration mechanisms by combining Ca2+ imaging and modeling in a different interneuron type, interneuron-specific interneurons type III. In conclusion, we were able to prove that certain interneurons possess alternative mechanisms, mediated through local Ca2+ transients, that allow for the regulation of plasticity at excitatory synapses.
Nasrallah, Kaoutsar. "Consequences of synaptic plasticity at inhibitory synapses in mouse hippocampal area CA2 under normal and pathological conditions". Thesis, Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCB089/document.
Texto completoThe hippocampus is a region of critical importance for memory formation. Recent studies have shown that the long-overlooked hippocampal region CA2 plays a role in certain forms of memory, including social recognition. Furthermore, post-mortem studies of schizophrenic patients have revealed specific changes in area CA2. As yet, the role of CA2 neurons in the hippocampal circuitry remains poorly understood under both normal physiological and pathological conditions. By combining pharmacology, mouse genetics and electrophysiology, we investigated how CA2 pyramidal neurons (PNs) could be recruited in hippocampal circuits in mice hippocampal slices following an activity-dependent change in the strength of their inhibitory inputs. We further investigated how subsequent recruitment of CA2 PNs could modulate hippocampal output. Moreover, we examined the functional alterations of area CA2 in the Df(16)A+/- mouse model of the 22q11.2 microdeletion, a spontaneous chromosomal deletion that is the highest known genetic risk factor for developing schizophrenia. In area CA2, inhibitory synapses exert a powerful control of Schaffer collateral (SC) inputs and undergo a unique long-term depression (iLTD) mediated by delta-opioid receptor (DOR) activation. Unlike SC-CA1 synapses, SC-CA2 excitatory synapses fail to express long-term potentiation after classical induction protocols. However, we found that different patterns of activity persistently increase both the SC and the distal input net excitatory drive onto CA2 PNs via a modulation of the balance between excitation and inhibition. We demonstrated that increases in the excitatory/inhibitory ratio are direct consequences of the DOR-mediated iLTD. Interestingly, we found that the inhibition in area CA2 completely preventing CA3 PNs to activate CA2 PNs, and following iLTD, SC stimulation allows CA2 PNs to fire action potentials. Moreover, the recruitment of CA2 PNs by SC intra-hippocampal inputs after their activity-dependent disinhibition adds a delayed SC-CA2-CA1 response to the SC-CA1 monosynaptic post-synaptic potential (PSP) in CA1 and increases CA1 PN activity. Furthermore, pharmaco-genetic silencing of parvalbumin-expressing interneurons revealed that these inhibitory cells control the PSP amplitude and the firing of CA2 PNs in response to SC stimulation and are necessary for the DOR-mediated increase in excitatory/inhibitory balance between CA3 and CA2. Finally, we found several age-dependent alterations in area CA2 in Df(16)A+/- mouse model of the 22q11.2 microdeletion. These included a reduction in inhibition, an impaired activity-dependent modulation of the excitatory drive between CA3 and CA2 and a more hyperpolarized CA2 PN resting potential. These cellular disruptions may provide a potential mechanism for the social memory impairment that we observe in Df(16)A+/- adult mice. Altogether, our studies highlight the role of CA2 neurons in hippocampal circuitry. To conclude, we postulate that the recruitment of CA2 neurons in neuronal networks underlies key aspects of hippocampal function
Klomjai, Wanalee. "Modifications d'excitabilité des réseaux neuronaux de la moelle épinière chez des sujets sains et des patients porteurs de lésions du système nerveux central". Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066165/document.
Texto completoMy thesis is devoted to the study of the spinal circuitry involved in motor functions using non-invasive electrophysiological methods in humans. It comprises two research projects.Studies in animals have shown that during neural development, GABAergic and glycinergic neurons are first excitatory, and then become inhibitory during maturation. This developmental transition is mainly due to the activation of co-transporter KCC2 at the mature state. A down-regulation of KCC2 was reported after spinal cord transection in the rat that leads to the depolarising (excitatory) action of GABA and glycine and thus results in a reduction of inhibitory synaptic efficiency. The aim of this project was to explore if spinal cord injury (SCI) in human reverses the pattern of GABAergic and glycinergic neurons back towards the immature state (primarily excitatory). To test this hypothesis, we studied the effects of furosemide (a KCC2 antagonist) on spinal inhibitory synaptic function, and compared the results obtained in healthy subjects and SCI patients. Results in healthy subjects suggest that furosemide (40 mg, orally-administrated) induces a reduction of inhibitory synapse functions. This effect of furosemide on inhibitory synapses seems to be reduced in SCI patients. Our results suggest that furosemide has the potential to test functions of inhibitory synapses in humans. The difference of furosemide effects on spinal inhibitory synapse excitability in healthy subjects and SCI patients favours the hypothesis of a decrease in inhibitory neuronal activity induced by down-regulation of KCC2 after SCI in humans that likely contributes to spasticity. Transcranial direct current stimulation (tDCS) has emerged as a method for exploring cortex excitability in humans. Roche et al. (2009) have shown in our laboratory that using anodal tDCS over contralateral motor cortex can also induce changes in spinal network excitability (i.e. reciprocal inhibition between forearm muscles) in the dominant limb in healthy subjects. It is unknown whether motor activity from the unaffected cerebral hemisphere could be employed after semi-brain damage in patients with hemiplegia. Moreover, little is known about the non-affected limb if it always functions like 'normal' after unilateral stroke. In this project, the ipsi- and contralateral corticospinal controls on reciprocal inhibition between forearm muscles were explored using anodal tDCS applied over the unaffected motor cortex of stroke patients and then compared to the results obtained in healthy subjects. Ipsilateral tDCS induces no change in reciprocal inhibition in healthy subjects. Similar results recorded on the affected upper limb are observed in stoke patients. However a larger number of patients is required to confirm the results. Contralateral anodal tDCS in healthy subjects shows no changes of reciprocal inhibition recorded in the non-dominant upper limb. This result is different from that observed in the dominant upper limb by Roche et al. (2009). This asymmetrical control on reciprocal inhibition would favour the hypothesis that the inter-hemispheric inhibition (IHI) between both motor cortices is asymmetric, with prominent IHI projections originating in the “dominant” left hemisphere. Contralateral anodal tDCS of the unaffected motor cortex induces a strong decrease in reciprocal inhibition in non-affected upper limb in stoke patients.This is different from that observed in both dominant and non-dominant upper limb in healthy subjects suggesting that the pathophysiological changes after unilateral stroke would probably not occur only on the hemiparesis side, but may also the non-affected side. A larger number of patients is still required to confirm the results
Vecchia, Dania. "EXCITATORY AND INHIBITORY SYNAPTIC TRANSMISSION AT CORTICAL SYNAPSES IN CaV2.1 KNOCK-IN MICE CARRYING FAMILIAL HEMIPLEGIC MIGRAINE MUTATIONS". Doctoral thesis, Università degli studi di Padova, 2010. http://hdl.handle.net/11577/3427028.
Texto completoL’emicrania emiplegica familiare di tipo 1 (FHM1), un raro sottotipo di emicrania con aura, è causata da mutazioni missense nel gene umano CACNA1A che codifica per la subunità α1 dei canali del calcio CaV2.1 (tipo P/Q) (Ophoff et al., 1996). Il mal di testa e i sintomi neurologici dell’aura che caratterizzano i tipici attacchi di FHM1 sono simili a quelli delle forme comuni di emicrania, eccetto per il sintomo dell’emiparesi (Pietrobon, 2007; Pietrobon and Striessnig, 2003). I canali CaV2.1 sono espressi nei terminali presinaptici e nelle membrane somatodendritiche di tutti i neuroni del cervello, dove svolgono un ruolo fondamentale nel controllo del rilascio di neurotrasmettitore. Le mutazioni FHM1 determinano un guadagno di funzione della corrente Ca2+ dei canali ricombinanti umani CaV2.1; in particolare causano un aumento dell’influsso di Ca2+ a livello di singolo canale in un ampio intervallo di potenziali vicini alla soglia di attivazione del canale, dovuto a un’aumentata probabilità d’apertura del canale, causata per lo più dallo spostamento della curva di attivazione del canale verso potenziali più negativi (Hans et al., 1999; Tottene et al., 2002, 2005; Pietrobon, unpublished data). In accordo con tali risultati, i topi omozigoti knock-in (KI) recanti la mutazione FHM1 R192Q (RQ/RQ) presentano, in granuli di cervelletto e in cellule piramidali corticali, un aumento della densità di corrente Ca2+ di tipo P/Q (Tottene et al., 2009; van den Maagdenberg et al., 2004). Questi topi mostrano, inoltre, una facilitazione dell’induzione e propagazione, in vivo, della cortical spreading depression (CSD: il fenomeno neurologico che causa l’aura e il possibile trigger del mal di testa emicranico) (Pietrobon, 2005, 2007; van den Maagdenberg et al., 2004). Per capire i meccanismi che determinano la facilitazione della CSD nei topi KI, in laboratorio abbiamo recentemente studiato la trasmissione sinaptica eccitatoria in neuroni corticali in microcoltura e in neuroni piramidali e interneuroni multipolari fast-spiking (FS) connessi tra loro sinapticamente in fettine acute talamo-corticali di topi KI RQ/RQ (Tottene et al., 2009). Lo studio della neurotrasmissione in microcolture di neuroni corticali ha rappresentato parte del mio progetto di Dottorato. I risultati hanno dimostrato un guadagno di funzione della neurotrasmissione eccitatoria dovuto a un aumentato influsso di Ca2+ evocato da potenziale d’azione, attraverso i canali del Ca2+ presinaptici di tipo P/Q, e a un’aumentata probabilità di rilascio di glutammato alle sinapsi delle cellule piramidali. Inoltre, usando un modello in vitro di CSD, abbiamo dimostrato una correlazione causale tra l’aumentato rilascio di glutammato alle sinapsi delle cellule piramidali e la facilitazione sperimentale della CSD nei topi KI RQ/RQ. Abbiamo costatato che la neurotrasmissione inibitoria alle sinapsi tra gli interneuroni multipolari FS e le cellule piramidali nelle fettine talamo-corticali di topi KI RQ/RQ era invece inalterata, sebbene la trasmissione sinaptica fosse controllata dai canali del Ca2+ di tipo P/Q (Tottene et al., 2009). Il suddetto effetto sinapsi-specifico delle mutazioni FHM1 consolida la visione dell’emicrania come un disordine episodico dell’eccitabilità cerebrale. Infatti, la distruzione del bilancio tra eccitazione e inibizione e la conseguente iperattività dei circuiti neuronali possono costituire, in risposta a specifici triggers, la causa degli episodi di suscettibilità all’innesco della CSD nell’emicrania. Mentre nei pazienti la mutazione R192Q causa tipici attacchi di FHM, la mutazione S218L causa una grave sindrome di emicrania emiplegica associata a convulsioni epilettiche, coma e grave edema cerebrale, dovuti spesso a traumi alla testa di lieve entità (Kors et al., 2001). La mutazione S218L, rispetto alla mutazione R192Q, determina un maggior spostamento verso potenziali più negativi della curva di attivazione dei canali umani ricombinanti CaV2.1 (Tottene et al., 2002, 2005). Inoltre, in accordo con il suddetto effetto, determina un maggior guadagno di funzione dell’influsso di Ca2+ nei neuroni a potenziali negativi e una maggiore facilitazione dell’induzione e propagazione della CSD in vivo nei topi omozigoti FHM1 KI S218L (SL/SL) rispetto ai topi KI RQ/RQ (van den Maagdenberg et al., 2004, 2010). L’effetto della mutazione S218L sulla corrente CaV2.1 Ca2+ neuronale e sulla facilitazione dell’induzione e propagazione della CSD risulta essere dipendente dal dosaggio allelico. Al fine di investigare i meccanismi che determinano la maggior facilitazione della CSD in topi KI SL/SL rispetto ai topi KI RQ/RQ, ho studiato la trasmissione sinaptica glutamatergica in neuroni piramidali corticali di topi eterozigoti KI S218L (SL/WT) cresciuti su microisole di cellule gliali in modo da formare sinapsi su se stessi (autapsi). Ho trovato un guadagno di funzione della neurotrasmissione corticale eccitatoria dovuto a un aumentato influsso di Ca2+ evocato da potenziale d’azione, attraverso i canali del Ca2+ presinaptici di tipo P/Q e a un’aumentata probabilità di rilascio di glutammato alle sinapsi delle cellule piramidali corticali dei topi KI SL/WT. Infatti, l’ampiezza della corrente postsinaptica eccitatoria evocata (EPSC) e il contributo dei canali Ca2+ di tipo P/Q alla trasmissione sinaptica erano entrambi aumentati alle sinapsi dei neuroni piramidali corticali in microcoltura. Inoltre ho dimostrato che la saturazione del sensore del Ca2+ avveniva a minor concentrazioni esterne di Ca2+ e che la paired pulse ratio (PPR) era diminuita. I cambiamenti nell’ampiezza dell’EPSC, nella Ca2+ dipendenza dell’EPSC e nella PPR, trovati nei topi KI SL/WT erano quantitativamente simili a quelli rilevati nei topi KI RQ/RQ. La mutazione S218L determina quindi un aumento maggiore dell’influsso di Ca2+ presinaptico e del rilascio di glutammato alle sinapsi corticali delle cellule piramidali rispetto alla mutazione R192Q che causa un fenotipo lieve di FHM1. Vista la correlazione causale tra l’aumentato rilascio di glutammato e la facilitazione sperimentale della CSD (Tottene et al., 2009), questo risultato potrebbe spiegare la maggior suscettibilità alla CSD indotta dalla mutazione S218L e il suo fenotipo grave. I dati hanno anche dimostrato che la trasmissione corticale eccitatoria in entrambi i topi FHM1 KI era meno suscettibile all’inibizione presinaptica conseguente all’attivazione dei recettori GABAB accoppiati a proteine G. Infatti, la frazione dell’EPSC inibito dal baclofen, agonista dei recettori GABAB, era minore nei topi KI SL/WT e KI RQ/RQ rispetto ai topi selvatici (WT) e, conseguentemente, la neurotrasmissione eccitatoria era ulteriormente facilitata in presenza di modulazione. I topi eterozigoti KI S218L e omozigoti KI R192Q presentavano una riduzione dell’inibizione presinaptica simile. I dati suggeriscono che l’iperattività dei circuiti corticali dovuta sia all’aumentato rilascio di glutammato dipendente dai canali CaV2.1, sia alla ridotta inibizione presinaptica del rilascio di glutammato durante neuromodulazione (attraverso l’attivazione di proteine G) possono rendere la corteccia dei pazienti FHM vulnerabile all’innesco della CSD in risposta a triggers emicranici. Un altro scopo del mio progetto di Dottorato consisteva nel determinare il meccanismo che causa l’effetto diverso della mutazione FHM1 R192Q sulla trasmissione sinaptica corticale eccitatoria e inibitoria, come descritto in Tottene et al. (2009). Ho studiato la neurotrasmissione inibitoria autaptica in singoli interneuroni corticali multipolari fast-spiking cresciuti su microisole di cellule gliali da topi WT e topi KI RQ/RQ. L’ampiezza media della corrente postsinaptica inibitoria (IPSC) evocata da potenziale d’azione era simile negli interneuroni multipolari dei topi WT e KI RQ/RQ, nonostante l’importante ruolo svolto dai canali Ca2+ di tipo P/Q nel controllo del rilascio di GABA a queste sinapsi. Ho trovato che il sensore del Ca2+ presinaptico, alle autapsi degli interneuroni multipolari nei topi WT, viene quasi saturato dall’influsso di Ca2+ evocato da potenziale d’azione. La mancanza del guadagno di funzione della neurotrasmissione inibitoria nei topi RQ/RQ KI non è comunque causata dalla saturazione del sensore Ca2+, poiché l’ampiezza dell’IPSC in interneuroni di topi WT e KI RQ/RQ era simile anche a basse concentrazioni di Ca2+ esterno. Ho costatato, infatti, una simile dipendenza dell’IPSC dalle concentrazioni esterne di Ca2+ alle autapsi degli interneuroni multipolari WT e KI RQ/RQ. Tali risultati suggeriscono che l’inalterata neurotrasmissione corticale inibitoria nei topi KI RQ/RQ sia dovuta soprattutto ad un aumento non significativo dell’influsso di Ca2+, evocato da potenziale d’azione attraverso i canali presinaptici CaV2.1 alle sinapsi degli interneuroni multipolari fast-spiking. Una possibile causa potrebbe essere la forma più corta del potenziale d’azione degli interneuroni FS e/o l’espressione, in questi interneuroni, di una variante di splicing della subunità α1 CaV2.1 poco influenzata dalla mutazione R192Q. L’inalterato influsso di Ca2+ evocato da potenziale d’azione attraverso i canali mutati presinaptici CaV2.1, alle sinapsi degli interneuroni multipolari FS, è probabilmente un effetto comune a tutte le mutazioni FHM1, poiché ho trovato inalterata anche la trasmissione sinaptica inibitoria alle autapsi degli interneuroni corticali multipolari FS nei topi eterozigoti KI S218L.
Pereira, Alyssa. "Rôle de la Cadhérine-13 dans le développement des synapses des cellules de Golgi". Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONT012.
Texto completoVarious studies have shown that alterations in the gene coding for Cadherin-13 (CDH13) are involved in many neurological disorders (autism (ASD), attention deficit disorders with or without hyperactivity, intellectual disabilities, psychiatric diseases). CDH13 is an atypical member of the cadherin superfamily. It lacks a transmembrane and intracellular domain and, unlike other cadherins, is attached to the membrane by a glycosylphosphatidylinositol (GPI) anchor. CDH13 plays several roles in axon guidance and growth and in the regulation of apoptosis during brain development. In the CDH13 KO mice, an increase in inhibitory synaptic currents and deficits in learning and memory were observed. In the cerebellum, CDH13 expression is restricted to the inhibitory Golgi cells. Deletion of CDH13 specifically in Golgi cells leads to ASD-like behavioral deficits in mice. Therefore, we sought to determine the molecular and cellular mechanisms of CDH13 in the formation of Golgi cell synapses during cerebellar development. Using constitutive or conditional mutant mice for CDH13, together with cell biology, biochemistry and immunohistochemistry approaches, both in vitro and in vivo, we characterized the mechanisms of action of CDH13 in Golgi cell synaptogenesis. We show that CDH13 is localized at the presynaptic sites of Golgi cells within glomeruli. In CDH13 knock-out mice, we observe a decrease in the density of synaptic markers at the pre and postsynaptic sites in glomeruli, demonstrating that CDH13 is required for normal glomerular synapse formation during cerebellar circuit development. In addition, we show that CDH13 trans-synaptically interacts with NLG2A, a splicing isoform of NLG2 that is crucial for the postsynaptic differentiation of inhibitory synapses. Finally, we demonstrate that CDH13 expression is sufficient to induce synaptic differentiation via its interaction with NLG2. Altogether, our results identify a new presynaptic molecular pl ayer in the establishment of inhibitory synapses and characterize the cellular and molecular mechanisms of glomerular synapse formation in the cerebellum
Schäfer, Jonas K. "Preparation and investigation of an in vitro model system for the GABAA receptor organisation machinery of inhibitory post synapses". Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://hdl.handle.net/21.11130/00-1735-0000-0005-1426-A.
Texto completoHuang, Yung-Chi. "Behavioral and Functional Analysis of a Calcium Channelopathy in Caenorhaditis elegans". eScholarship@UMMS, 2017. https://escholarship.umassmed.edu/gsbs_diss/893.
Texto completoHuang, Yung-Chi. "Behavioral and Functional Analysis of a Calcium Channelopathy in Caenorhaditis elegans". eScholarship@UMMS, 2004. http://escholarship.umassmed.edu/gsbs_diss/893.
Texto completoBautista, Melissa A. "Ultrastructural Analysis of Excitatory and Inhibitory Synapses within the Medial Nucleus of the Trapezoid Body of Normal Hearing and Congenitally Deaf Mice". Wright State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=wright1229722450.
Texto completoSchäfer, Jonas K. [Verfasser]. "Preparation and investigation of an in vitro model system for the GABAA receptor organisation machinery of inhibitory post synapses / Jonas K. Schäfer". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2020. http://d-nb.info/1236401492/34.
Texto completoMayer, Simone Verfasser], Nils [Akademischer Betreuer] Brose, Reinhard [Akademischer Betreuer] Jahn, Blanche [Akademischer Betreuer] Schwappach, Tobias [Akademischer Betreuer] [Moser, Oliver [Akademischer Betreuer] Schlüter y Dieter [Akademischer Betreuer] Klopfenstein. "Molecular mechanisms of collybistin-dependent gephyrin clustering at inhibitory synapses / Simone Mayer. Gutachter: Reinhard Jahn ; Blanche Schwappach ; Tobias Moser ; Oliver Schlüter ; Dieter Klopfenstein. Betreuer: Nils Brose". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2014. http://d-nb.info/1053119356/34.
Texto completoLilly, Scott Matthew. "Protein Kinase A Alterations Following Chronic Flurazepam Treatment: Implications for Inhibitory and Excitatory Synaptic Plasticity in Rat Hippocampal CA1". Connect to full-text via OhioLINK ETD Center, 2006. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=mco1145293063.
Texto completo"In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Sciences." Major advisor: Elizabeth I. Tietz. Includes abstract. Document formatted into pages: iv, 234 p. Title from title page of PDF document. Bibliography: pages 86-95,126-135,167-174,190-232.
Yang, Xiaojuan. "Microscopie super-résolutive aux synapses inhibitrices mixtes : régulation différentielle des GlyRs et des GABAARs par l’activité excitatrice". Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE012/document.
Texto completoStochastic optical reconstruction microscopy (STORM) bypasses the diffraction limit by recording spatially and temporally separated single molecule signals, achieving a resolution of ~10-40 nm. In my study, I have developed a two-color dSTORM imaging and data analysis strategy, in order to investigate the ultrastructure of mixed inhibitory synapses. My results show that GlyRs, GABAARs, gephyrin and RIM1/2 exhibit a heterogeneous intra-synaptic organization and form sub-synaptic domains (SSDs). GlyRs and GABAARs were not fully intermingled, but sometimes occupied different spaces at the post-synaptic density (PSD). In addition, post-synaptic gephyrin SSDs were aligned with pre-synaptic RIM1/2 SSDs, forming trans-synaptic nanocolumns. During elevated neuronal activity by 4-AP treatment, the spatial correlation between GlyRs, GABAARs and gephyrin was increased at the PSD. Moreover, the spatial correlation of GlyRs and RIM1/2 was also increased, while that of GABAARs and RIM1/2 did not change. The number of SSDs per synapse for these synaptic proteins was not changed by 4-AP. My study thus provides a new angle for understanding the mechanisms underlying GABAergic/glycinergic co-transmission
Leonardon, Benjamin. "Modulation de la transmission synaptique inhibitrice par les récepteurs NMDA dans la corne dorsale de la moelle épinière de souris". Thesis, Strasbourg, 2020. http://www.theses.fr/2020STRAJ006.
Texto completoIn the dorsal horn (DH) of the spinal cord, inhibitory synaptic transmission plays a key role in the processing of nociceptive information. This inhibition can display plastic changes linked with hyperalgesia and allodynia associated with neuropathic pain. In the DH, NMDA receptors are recruited following a nerve injury. Although their role in plastic phenomenon is well established, little is known about their involvement in spinal inhibition plasticity. My research project aims at studying the effect of NMDA receptor activation on spinal synaptic inhibition in a normal state and during neuropathic pain. To do so we used an electrophysiological approach on acute spinal cord slices of adult mice. Results obtained allow a better understanding of the mechanism underlying the modulation and plasticity of inhibitory transmission within the spinal nociceptive network
Santos, Inês Baião. "ARHGAP8 co-regulates excitatory and inhibitory synapse function". Master's thesis, 2017. http://hdl.handle.net/10316/83148.
Texto completoA remodelação das estruturas sinápticas, dependente do tipo de estímulos que recebem, é o mecanismo molecular responsável pela plasticidade dos circuitos neuronais – um processo que se julga estar na base da aprendizagem e da memória. O processamento de informação e a plasticidade dos circuitos no sistema nervoso central dependem do equilíbrio entre a função excitatória e a função inibitória. O estabelecimento de uma correta transmissão glutamatérgica (excitatória) e GABAérgica (inibitória) é essencial para o controlo do equilíbrio entre excitação e inibição e para o funcionamento normal dos circuitos neuronais; a perda deste equilíbrio está geralmente associada ao desenvolvimento de neuro-psiquiátricos. As GTPases são uma família de proteínas associadas com a regulação do citoesqueleto de actina, e que têm um papel relevante no desenvolvimento e plasticidade da sinapse. As GTPases apresentam um ciclo de activação (quando ligadas a GTP) e inactivação (quando ligadas a GDP) que é regulado pelos factores de troca de nucleotídeos de guanina (GEFs) e pelas proteínas activadoras de GTPase (GAPs), respectivamente. Apesar de existirem dezenas de GEFs e GAPs no cérebro (um número superior ao de GTPases), a função da maioria destas proteínas ainda não foi descrita. Tipicamente, as proteínas reguladoras de GTPases possuem vários domínios proteicos, que lhes conferem um papel importante como integradores de sinalização intracelular. Uma vez que as GTPases estão envolvidas em vários processos do desenvolvimento neuronal, como por exemplo, a migração neuronal, a formação da árvore dendrítica e o desenvolvimento sináptico – quer excitatório quer inibitório, a sua regulação é de extrema importância para o normal desenvolvimento dos circuitos neuronais e normal função cognitiva. De facto, distúrbios na sinalização pelas GTPases podem causar defeitos sinápticos que originam défices cognitivos. Para além disso, mutações em genes que codificam proteínas reguladoras e sinalizadores das GTPases já foram extensamente associadas a défices cognitivos e outros distúrbios comportamentais. Neste estudo, focamo-nos na caracterização da função neuronal da proteína ARHGAP8, uma nova proteína potenciadora da actividade de GTPases de Rho-GTPases. Resultados preliminares do nosso grupo indicam que a proteína ARHGAP8 está presente nas densidades pós-sinápticas das sinapses excitatórias e que esta GAP pode estar envolvida na regulação deste tipo de sinapses. Tendo em consideração esta hipótese, foram realizadas experiências com o objectivo de testar os efeitos da sobre-expressão de ARHGAP8 na transmissão sináptica mediada por receptores AMPA. Os nossos resultados demonstraram que a sobre-expressão de ARHGAP8 causa uma diminuição na frequência e amplitude de correntes excitatórias pós sinápticas miniatura, o que indica que a proteína ARHGAP8 regula negativamente a transmissão sináptica excitatória mediada pelo receptor AMPA. Para além disto, caracterizámos a presença desta proteína nas sinapses inibitórias. Os nossos resultados indicam que a proteína ARHGAP8 está presente nas sinapses inibitórias e que regula a acumulação de marcadores sinápticos inibitórios. Estes resultados sugerem que a proteína ARHGAP8 coordena o desenvolvimento de ambos os tipos de sinapses (excitatórias e inibitórias). Mais experiencias são necessárias de forma a desvendar os mecanismos através dos quais a proteína ARHGAP8 regula a transmissão sináptica medida por receptores AMPA e a composição da sinapse inibitória, bem como, para avaliar se a proteína endógena está envolvida na regulação de sinapses excitatórias e inibitórias.
The activity-dependent modifications of synaptic strength are the molecular mechanism that underlie circuit plasticity, the molecular device for learning and memory. However, maintaining proper balance of excitation and inhibition (E/I balance) is critical for information processing and plasticity in the central nervous system (CNS). Correct excitatory glutamatergic transmission and inhibitory GABAergic signalling are essential for tight control of E/I balance and normal neural circuit function, and disruption of E/I often underlies the development of neuropsychiatric disorders. As key regulators of the actin cytoskeleton, Rho-family GTPases play a critical role in synapse development and plasticity. They shuttle between an active GTP-bound form and an inactive GDP-bound form. Their activation and inactivation cycle is under the regulation of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), respectively. Even though dozens of GEFs and GAPs have been detected in the brain (outnumbering Rho GTPases), the function of most of them has not been elucidated. Rho-regulatory proteins typically comprise multiple signalling domains, playing an important role as key signalling integrators and scaffolds. Given that Rho GTPases regulate a myriad of neurodevelopmental processes including neuronal migration, dendritic arborization and synaptogenesis, their precise regulation is important for circuitry development and normal cognitive function. In fact, aberrant Rho GTPase signalling can cause synaptic defects that can ultimately lead to cognitive impairments. Furthermore, mutations in genes encoding regulators and effectors of the Rho GTPase family have already been associated with intellectual disability (ID) and other neurodevelopmental disorders.Here, we focus on the characterization of a novel Rho-GTPase activating protein, ARHGAP8, in the brain. Preliminary data from our group showed that ARHGAP8 is present at the post-synaptic densities of excitatory synapses in an NMDA receptor-dependent way, and that this Rho-GAP might be involved in the regulation of excitatory synapses. Considering this hypothesis, further studies were conducted testing the functional effects of overexpressing ARHGAP8 in AMPA receptor-mediated transmission. Our data show that overexpression of ARHGAP8 decreases the amplitude and frequency of miniature excitatory post-synaptic currents, indicating that ARHGAP8 downregulates AMPA receptor-mediated excitatory synaptic transmission. Furthermore, we characterized the presence of this protein in inhibitory synapses to further extend our knowledge of its role in neurons. Our results indicate that ARHGAP8 is present in inhibitory synapses, and regulates the synaptic accumulation of inhibitory synapse markers. Collectively, these observations suggest that ARHGAP8 coordinates the development of excitatory and inhibitory synapses. Further investigation should be done in order to unravel the mechanisms through which ARHGAP8 modulates AMPAR-mediated synaptic transmission and inhibitory synapse composition, and to evaluate if endogenous ARHGAP8 is involved in the regulation of both excitatory and inhibitory synapses.
Outro - FCT: PTDC/SAU-NMC/4888/2014 e UID/NEU/045S39/2013 Programa Mais Centro: CENTRO-07-ST24-FED ER-002002, 002006, 002008
Hoon, Mrinalini. "Role of Neuroligins at the Inhibitory Postsynaptic Compartment of the Retina". Doctoral thesis, 2010. http://hdl.handle.net/11858/00-1735-0000-0006-B512-1.
Texto completoPoulopoulos, Alexandros. "Mechanisms of Neuroligin Function in Inhibitory Postsynaptic Differentiation". Doctoral thesis, 2008. http://hdl.handle.net/11858/00-1735-0000-0006-B502-5.
Texto completoSoykan, Tolga. "Neuroligin 2 Induced Allosteric Transition of Collybistin Underlies Inhibitory Postsynaptic Differentiation". Doctoral thesis, 2011. http://hdl.handle.net/11858/00-1735-0000-000D-F0AD-9.
Texto completoMayer, Simone. "Molecular mechanisms of collybistin-dependent gephyrin clustering at inhibitory synapses". Doctoral thesis, 2014. http://hdl.handle.net/11858/00-1735-0000-0022-5F06-C.
Texto completoHoang, Phuong Thi. "Subtype diversification and synaptic specificity of stem cell-derived spinal inhibitory interneurons". Thesis, 2017. https://doi.org/10.7916/D8Z89J66.
Texto completoFang, Cheng. "Structural and functional modulation of inhibitory synapses by GODZ-mediated palmitoylation of GABAA receptors". 2007. http://www.etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-1888/index.html.
Texto completoOrmond, John. "Disinhibition at Feedforward Inhibitory Synapses in Hippocampal Area CA1 Induces a Form of Long-term Potentiation". Thesis, 2009. http://hdl.handle.net/1807/24326.
Texto completoHardie, Jason B. "Shaping of inhibitory fuction : interactions of cellular properties with [Gamma]-aminobutyric acid type A synapses in CA1 of the hippocampus /". 2005. http://catalog.hathitrust.org/api/volumes/oclc/70853476.html.
Texto completoWhitebirch, Alexander Craig. "Inhibitory-excitatory imbalance in hippocampal subfield cornu ammonis 2 circuitry in a mouse model of temporal lobe epilepsy". Thesis, 2021. https://doi.org/10.7916/d8-289z-fj47.
Texto completoNasar, Rakin Tammam. "Comparisons of calretinin and parvalbumin neuronal distribution, density and inhibitory synapses in rhesus monkey prefrontal cortex and primary visual cortex and the analogous areas of mice". Thesis, 2020. https://hdl.handle.net/2144/41318.
Texto completoCorrêa, Sonia A. L., C. J. Hunter, O. Palygin, S. C. Wauters, K. J. Martin, C. McKenzie, K. McKelvey et al. "MSK1 regulates homeostatic and experience-dependent synaptic plasticity". 2012. http://hdl.handle.net/10454/5942.
Texto completoThe ability of neurons to modulate synaptic strength underpins synaptic plasticity, learning and memory, and adaptation to sensory experience. Despite the importance of synaptic adaptation in directing, reinforcing, and revising the behavioral response to environmental influences, the cellular and molecular mechanisms underlying synaptic adaptation are far from clear. Brain-derived neurotrophic factor (BDNF) is a prime initiator of structural and functional synaptic adaptation. However, the signaling cascade activated by BDNF to initiate these adaptive changes has not been elucidated. We have previously shown that BDNF activates mitogen- and stress-activated kinase 1 (MSK1), which regulates gene transcription via the phosphorylation of both CREB and histone H3. Using mice with a kinase-dead knock-in mutation of MSK1, we now show that MSK1 is necessary for the upregulation of synaptic strength in response to environmental enrichment in vivo. Furthermore, neurons from MSK1 kinase-dead mice failed to show scaling of synaptic transmission in response to activity deprivation in vitro, a deficit that could be rescued by reintroduction of wild-type MSK1. We also show that MSK1 forms part of a BDNF- and MAPK-dependent signaling cascade required for homeostatic synaptic scaling, which likely resides in the ability of MSK1 to regulate cell surface GluA1 expression via the induction of Arc/Arg3.1. These results demonstrate that MSK1 is an integral part of a signaling pathway that underlies the adaptive response to synaptic and environmental experience. MSK1 may thus act as a key homeostat in the activity- and experience-dependent regulation of synaptic strength.