Tesis sobre el tema "Inhibiteurs de point de contrôle immunitaires"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 17 mejores tesis para su investigación sobre el tema "Inhibiteurs de point de contrôle immunitaires".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Ramel, Eloïse. "Effet des inhibiteurs de la pompe à proton gastrique sur la réponse anti tumorale aux inhibiteurs de point de contrôle immunitaire". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0227.
Texto completoImmune checkpoint inhibitors (ICIs) have revolutionized the management of many advanced cancers, but their success depends on genetic, biological, and environmental factors. Multiple retrospective studies have shown negative associations between the use of proton pump inhibitors (PPIs) and clinical response to ICIs. PPIs are also known to modify the composition of the gut microbiome, a key factor in modulating the immune response to ICIs. We hypothesized that PPI-induced dysbiosis could be responsible for the negative association to clinical outcomes in cancer patients. We used murine models of subcutaneous cancer grafts to study the antitumor immune response during ICI treatment, either concomitantly or not with PPI treatment (omeprazole). Our initial results showed changes in the gut microbiome in mice treated with omeprazole, but without any impact on the efficacy of ICIs. Since the PPI-associated intestinal dysbiosis in humans is likely due to the translocation of oral bacteria into the intestine, we transplanted a human oral microbiome into mice to mimic this effect. The presence of this oral microbiome, combined with PPI treatment, appeared to impair tumor progression control in mice but needs further experiments. In parallel, we demonstrated in vitro that omeprazole exerts a direct effect on the effector functions of T and NK cells, particularly on the expression of membranebound FasL. Additionally, omeprazole administration in mice was associated with decreased FasL expression on the surface of T/NK cells isolated from tumors or peripheral blood. These findings encourage further research into the role of oral bacteria in the effects of omeprazole on the antitumor immune response, while also suggesting that the direct impact of omeprazole on immune functions within tumors should be considered
Melique, Suzanne. "Analyse des capacités modulatrices de la protéine THEMIS sur la signalisation et les fonctions biologiques du checkpoint immunitaire BTLA". Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSES079.
Texto completoImmune checkpoints are receptors that negatively regulate T lymphocyte responses triggered by antigen receptors (TCR) via co-stimulatory receptors. Therapies based on the use of monoclonal antibodies targeting these receptors have significantly improved the efficacy of cancer therapies. The immune checkpoint BTLA regulates T lymphocyte activation and maintenance of peripheral CD8+ T lymphocytes by inhibiting signaling emanating from the TCR through the SH2 domain-containing tyrosine phosphatase, SHP-1. BTLA is expressed on T lymphocytes during development in the thymus at the positive selection stage, but its biological functions in this context are unknown. THEMIS is a signaling protein essential for T lymphocyte development and maintenance of CD8+ T lymphocytes in peripheral tissues. Deletion of the gene encoding THEMIS is associated with a defect in positive selection of thymocytes and lymphopenia. THEMIS promotes positive selection and maintenance of CD8+ T lymphocytes by inhibiting the catalytic activity of SHP-1. We hypothesized that THEMIS may promote positive selection and maintenance of CD8+ T lymphocytes by repressing the inhibitory functions of BTLA. We have shown that deletion of the gene encoding THEMIS in mouse models increases BTLA's ability to inhibit activation and differentiation of CD4+ and CD8+ lymphocytes. THEMIS is recruited to BTLA and represses SHP-1 phosphatase activity by increasing oxidation of its catalytic cysteine. Deficiency in THEMIS, however, has no effect on the inhibitory functions of the immune checkpoint PD-1, which primarily depends on the tyrosine phosphatase SHP-2. We show that deletion of the gene encoding BTLA restores positive selection in THEMIS-deficient mice, indicating that THEMIS promotes positive selection by blocking BTLA's inhibitory signaling. THEMIS also promotes maintenance of peripheral CD8+ T lymphocytes by reducing BTLA's ability to inhibit survival signals triggered by IL-2 and IL-15 receptors. These results suggest that inhibitory signals triggered by immune checkpoints depend on interactions with their ligands but are also constrained by intracellular proteins that modulate the threshold at which these receptors are able to inhibit T lymphocytes. These findings have implications for understanding the therapeutic mechanisms involved in cancer treatment and the mechanisms underlying the emergence of autoimmune diseases
Soussan, Sarah. "B lymphocytes and autoantibodies in immune-related adverse events following immune checkpoint inhibitors in cancer patients". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS022.pdf.
Texto completoImmune checkpoints inhibitors (ICI) have revolutionized the treatment of previously incurable malignancies. Unfortunately, the use of ICI also induces a bystander breakdown of peripheral tolerance leading to immune related Adverse Events (irAEs) in 30-90% of treated patients, drastically reducing quality of life and requiring therapy dose reduction or discontinuation. As ICI directly target T cells, they have been considered the main culprit for irAEs. Nevertheless, T cells cannot fully explain adverse events, and the role of B cells and their associated mechanisms have not been characterized. We therefore studied the involvement of peripheral B-cell compartment in irAEs, using both phenotypic and functional approaches, in two cohorts of solid cancer patients treated with anti-PD-1 and/or anti-CTLA-4 monoclonal antibodies. Deep phenotyping of B-cell subsets throughout the treatment and at the onset of irAEs has been performed by multi-parametric spectral flow cytometry. Subsequently, to analyze the functions of B-cell subsets, notably their ability to produce antibodies, we set-up a B-cell culture system allowing in vitro differentiation of B cells into antibody-secreting cells. This gave us the opportunity to analyze the antibody production by circulating B cells and their association with irAEs occurence. The screening of circulating B cells phenotype and function was conducted alongside the evaluation of the serum and plasma reactivity of cancer patients by complementary approaches (ELISA, Western Blot, Immunofluorescence assays). We found that, before treatment, patients that develop ICI-induced irAEs exhibit a significantly lower expression on B cell subsets of the FcγRIIB, CD85j and LAIR-1 inhibitory receptors in melanoma patients and higher expression of the CD95 and CXCR5, respectively activating and lymphoid organs re-circulatory markers in lung cancer patients. In addition, increased in baseline abundance of hyper-activated IgD- memory B cell subset or plasmablasts precursor were observed in patients that will undergo irAEs. Moreover, a part of irAEs patients exhibit baseline or ICI-induce circulating autoantibodies which could be directed against the related tissue of irAEs occurrence. Indeed, patients experiencing cardiac/muscular irAEs demonstrated autoantibodies directed against cardiac tissues and well-defined cardiac/muscle antigens. Finally, IgG derived from cardiac/muscular irAEs patients bound to human cardiomyocytes and perturbed the calcium kinetic and the contractibility of cardiac spheroids. These findings highlight a predisposition of irAEs incidence in patients with baseline highly activated and differentiated circulating B cells associated with autoantibody production. Overall, these results support the potential role of the humoral adaptative immunity in the mechanisms of ICI-induced irAEs
Karaboué, Abdoulaye. "Rôle du système circadien dans le contrôle de la survie des patients traités par immunothérapie pour cancer : Analyse des mécanismes impliqués". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASQ019.
Texto completoA better understanding of physiopathological mechanisms and better-targeted treatments, according to the characteristics of the patient and his/her tumor, are the focus of intensive research, within the framework of precision and personalized cancer medicine. Precision medicine is now beginning to integrate molecular circadian clocks, which generate periodic oscillations of around 24 h in metabolism, cell proliferation and death, as well as responses to toxic or therapeutic drugs. Several experimental, clinical and epidemiological studies have demonstrated the important role of the circadian timing system in all stages of carcinogenesis, from initiation and promotion to progression and metastatic dissemination. The circadian timing system also influences tolerance and efficacy of anti-cancer treatments, both in experimental models and in patients. After my initial observation of an apparent great homogeneity in the temporal responses to cancer immunotherapy in my clinical practice, I have been investigating the role of dosing time and circadian rhythms in the efficacy of immune checkpoint inhibitors. Indeed, immunotherapy has emerged as a standard anticancer treatment for several cancer types in the last decade. However, not all patients benefit from it, and only a small number are cured. My current thesis project results first highlighted the role of the time of administration of immune checkpoint inhibitors on their efficacy and tolerability in patients with non-small cell lung cancer, with a four-fold increase in survival of patients treated in the morning compared with the afternoon or evening. I then showed, in a first meta-analysis and then in a review, that morning administration of immunotherapy doubled on average the survival and progression-free survival of patients with eight different types of cancer. I then propose the main circadian mechanisms that can influence the efficacy of immunotherapy over the course of 24 hours. Finally, my work shows that morning administration of an immune checkpoint inhibitor also doubles its efficacy compared with afternoon administration, despite its combination with immunosuppressive chemotherapy. Moreover, the administration times of the first four immunochemotherapy cycles recapitulate the chrono-immunotherapeutic effect of the treatment over its full duration the vast entire. In conclusion, the discovery of a major impact of the time of administration of cancer immunotherapy on its efficacy is in favor of between-patient synchronization of the circadian mechanisms of its pharmacodynamics vis-à-vis immune system cells. The characterization of between-patient differences in circadian synchronization could further enable personalized optimization of cancer chronoimmunotherapy
Chavanton, Aude. "Optimisation de traitements immunothérapeutiques dans le cancer". Electronic Thesis or Diss., Bourgogne Franche-Comté, 2024. http://www.theses.fr/2024UBFCI005.
Texto completoCancer is a disease caused by the proliferation of transformed cells that cannot be controlled by the body, ultimately leading to death. Today, it is the leading cause of death in France, making it a major focus of research interest. Despite the wide range of cancer treatments currently available in clinical practice (chemotherapy, radiotherapy, hormone therapy, etc.), many patients do not respond to these therapies, and the death rate is still very high. Some fifteen years ago, immunotherapy took its first clinical steps and demonstrated promising effects, becoming a promising new therapeutic weapon against cancer. Immunotherapy is a therapeutic approach designed to stimulate the immune system to better destroy cancer cells. Anti-PD-1/PD-L1 immunotherapy has shown promising effects in various types of cancer. However, despite their efficacy in some patients, many do not respond to these therapies in multiple cancer types, including colorectal cancer. In this context, the research team in which I carried out my PhD demonstrated that the heat shock protein HSP110 promotes colorectal cancer cell proliferation and is associated with poor prognosis in colorectal cancer. This led to the development of an HSP110 inhibitor molecule called i007. The aim of this thesis work is to evaluate the efficacy of anti-PD-L1/i007 dual therapy in colorectal cancer, and to identify whether HSP110 inhibition can improve the efficacy of anti-PD-L1. We were able to identify an antitumor effect of this dual therapy, probably mediated by depleted CD8+ cells and the secretion of granzyme A, B, interferon γ and perforin. Macrophages, NK cells and mast cells also appear to be involved in the immune response induced by double therapy, but their exact role remains to be defined. Finally, an opening to a possible new project seeking to potentiate the effect of anti-PD-L1 was highlighted, by combining anti-PD-L1 with anti-LAG-3
Grasselly, Chloé. "Établissement et caractérisation de modèles précliniques de résistance aux inhibiteurs de points de contrôles immunitaires". Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1256/document.
Texto completoBecause of the limited efficacy and the toxicity of conventional therapies to fight cancer, researchers focused on the new trategies. These efforts lead to the emergence of immunotherapies, whose msot recent actors are the monoclonal antibodies targeting immune checkpoint (ICP). Among those ICP inhibitors, we found antibodies targeting the surface protein « Programmed Cell Death 1 », called anti- PD1, and those targeting its ligand, « Programmed Cell Death Ligand 1 », called anti- PDL-1. Those antibodies shown a great efficacy in a wide diveristy of cancers, and are currently used for clinical practice in the case of melanoma, lung cancer, bladder cancer and renal cell carcinoma. However, those treatments don’t benefit to all tumor bearing patients, with a mean of 60% of innate resistance, and 25% of acquired resistance following a primary response, variable according to tumor type. Phenomena involved in resistance are currently poorly described. In this context, the aim of my project was to establish in vivo preclinical models of acquired resistance to anti-PD1 and anti-PDL-1. To do that, we used syngeneic renal cancer (RENCA), bladder cancer (MB49 and MBT-2), and colorectal cancer (MC38), and immunocompetent mice, that we have made resistant by serial reimplantations of tumors pieces and serial treatments, inducing a selection pressure until we obtained a resistant phenotype. The efficiency of PD1/PDL-1 axis blocking is strongly linked to the microenvironment composition, as a result we realized an immunophenotyping protocol. We observed anti-tumor cells as T cells, Natural Killer cells, and M1 macrophages, but also cells harboring immunosuppressive functions, as M2 macrophages, MDSC, and Treg. Moreover, some studies have identified an upregulation of alternatives ICP in the context of acquired resistance to anti-PD1, so we also observed the expression of LAG3, TIM3 and TIGIT besides PD1 and PDL-1 expression. We shown that resistance is strongly dependant to the tumor model, even if we identified a decrease of anti-tumor M1 macrophages is models resistant to anti-PD1, and an increase of Treg in models resistant to anti-PDL-1, suggesting a common mechanism of resistance specific to respectively anti PD1 and anti-PDL-1. Following Zaretsky and al. identification of genes involved in interferon pathway in the case of acquired resistance to anti-PD1 in melanoma, we decided to study the molecular profile of resistant tumors. We identified 5 common genes differently modulated between anti-PD1 and anti-PDL-1 resistant models, including SERPINF1 and FCNA which seems to be promising as targets to validate. Lastly, in parallel to establishment and characterization of preclinical models of acquired resistance, we tested new therapeutical approches of anti-PD1 and anti- PDL-1 potentiation in combination with reference chemotherapies. We shown a synergy in wild-type colorectal and bladder cancers (MC38 and MB49), no effect of the combination in metastatic breast cancer 4T1, and an inhibition of anti-PDL 1 effect in bladder cancer MBT-2. Immunphenotyping of tumors allowed us to observe here also high differences between tumor models, both at baseline and after treatments initiation. To conclude, even if our results need a validation with patients samples, we demonstrated that different cellular and molecular modifications could be involved in resistance to anti-PD1 and anti-PDL-1, and that resistance could be bypass with chemotherapy combination, according to tumor type
Dréan, Raphaelle. "Développement de nano-anticorps antagonistes du point de contrôle immunitaire ILT4 pour une application en immunothérapie antitumorale". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS446.
Texto completoILT4 (Immunoglobulin-Like Transcript 4) is an immune checkpoint receptor mainly expressed by myeloid immune cells. In cancer context, ILT4 participates in tumor development by maintaining a protumoral immuno-microenvironment and directly promoting tumor cell proliferation. ILT4 interaction with the non-classical MCH class I molecule HLA-G induces an immunosuppressive microenvironment by promoting tolerogenic myeloid cells. Moreover, the ectopic expression of ILT4 has been reported in several solid tumors. The activation of ILT4 by Angiopoietin-like-2 (ANGPTL2) promotes non-small cell lung tumor cell proliferation and inhibits cell apoptosis. Targeting this new immune checkpoint with blocking antibodies is therefore a promising cancer immunotherapy approach. In light of several drawbacks of classical IgG blocking antibodies in solid cancer, we investigated the potential of VHH-based inhibitors. This small monoclonal antibody format, derived from camelid homodimeric antibodies, combine the binding capacities of antibodies to the properties of small molecules. After immunization of an alpaca and phage-display screening, we selected a VHH with high affinity and specificity to ILT4 that inhibits the interaction of the receptor with both ligands. We validated the VHH’s biological antagonist activity on tumor cells and monocyte-derived pro-tumoral M2 like macrophages in vitro. These results support the potential of this new VHH-based antibody targeting ILT4 in cancer immunotherapy
Cavelier, Cindy. "Etude du point de contrôle des dommages à l'ADN". Toulouse 3, 2010. http://thesesups.ups-tlse.fr/889/.
Texto completoAcute Myeloid Leukemia (AML) is a clonal hematopoietic disorder characterized by the accumulation of malignant hematopoietic progenitor cells with an impaired myeloid differentiation program. The molecular basis of AML is thought to be associated with the acquisition of at least two types of critical cooperating mutations occurring at the hematopoietic stem or committed progenitors level. Class I mutations, affecting tyrosine kinases receptors and key components of cellular signalling pathways, confer growth and proliferative advantages. They are associated with class II mutations, affecting transcription factors thus leading to impaired normal differentiation program. In this study, we were first interested in CHK1, a protein kinase involved in preserving genome integrity by playing a critical role at the intra-S and G2/M cell cycle checkpoint activated in DNA damage response. We have shown that activation of CHK1 was sustained in immature cell lines, leading to a more stringent G2/M checkpoint in response to DNA damage, thus impairing illegitimate entry into mitosis in presence of unrepaired DNA damage and participating in their resistance to genotoxic agents. In a second study, we have demonstrated an abnormal activation of the CHK1 kinase in a large panel of AML patient samples, associated with the presence of constitutive DNA damage in absence of genotoxic stress. Moreover, the level of CHK1 activation is significantly correlated with unfavourable cytogenetic samples, particularly with complex karyotype phenotype. CHK1 inhibition by the pharmacological inhibitor UCN-01 or by RNA interference was found to decrease the clonogenic capacity of the AML progenitors, and to induce a chemosensitisation to ara-C. In contrast, growth of normal hematopoietic progenitors, which do not display constitutive DNA damage, was not impaired by such treatment. Overall, all these results underline the dual role of CHK1 kinase in AML pathology in the chemoresistance of immature leukemic cells and in the establishment of the genomic instability observed in complex karyotype AML. These findings could have major pharmacologic consequences, because they open a therapeutic window for new compounds targeting the cell cycle checkpoint machinery in AML and more particularly in the worst prognostic group with complex karyotype
Liu, Peng. "Mort cellulaire immunogène induite par le crizotinib dans le cancer poumon non à petites cellules". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS148.
Texto completoAccumulating evidence suggests that certain conventional chemotherapies, radiotherapies, as well as targeted therapies mediate their long-term therapeutic success by inducing immunogenic cell death (ICD), which stimulate the release or exposure of danger-associated molecular patterns from or on cancer cells, causing their recognition by the immune system, thus reinstating immunosurveillance. An unbiased screen identified crizotinib as a tyrosine kinase inhibitor that is potent in provoking hallmarks of ICD. In subsequent low-throughput validation experiments, crizotinib promoted Calreticulin exposure, ATP secretion, HMGB1 release, as well as ER stress in both human and murine cancer cells, especially if it is combined with normally non-ICD inducing chemotherapeutics such as cisplatin. ICD induced by the combination of chemotherapy and crizotinib was also observed in non-small cell lung carcinoma (NSCLC) cells lacking activating mutations of the crizotinib targets ALK and ROS1, suggesting an off-target-mediated mode of action. Comparative studies indicated that exclusively the clinically used (R) isoform of crizotinib was efficient in inducing cell death and stimulating ICD hallmarks whereas the (S) enantiomer lacked those characteristics. When combined with cisplatin, crizotinib-killed fibrosarcoma MCA205 cells as well as lung cancer TC-1 cells efficiently vaccinated syngeneic immunocompetent mice against a re-challenge with live cancer cells of the same types. Crizotinib improved the efficacy of chemotherapy with non-ICD inducers (such as cisplatin and mitomycin C) on three distinct (transplantable, carcinogen- or oncogene induced) orthotopic NSCLC models, none of which relied on the activation of ALK or ROS1. Of note these anticancer effects were completely lost if any of the ICD signals was blocked. These anticancer efficacies in different models were linked to an increased T lymphocyte infiltration as a sign of an immune response and were lost if such tumors grew on immunodeficient (nu/nu) mice that are athymic and hence lack thymus-dependent T lymphocytes, or on immunocompetent mice with a neutralization of interferon-. The combination of cisplatin and crizotinib led to an increase in the expression of CTLA-4, PD-1 and PD-L1 in tumors, coupled to a strong sensitization of NSCLC to immunotherapy with antibodies blocking CTLA-4 and PD-1. Hence, a combination of crizotinib, conventional chemotherapy and immune checkpoint blockade may be active against NSCLC, and these data might facilitate the design of clinical trials to evaluated novel combination regiments for the treatment of NSCLC
De, Vries-Brilland Manon. "Caractérisation du microenvironnement immunitaire des carcinomes papillaires du rein". Electronic Thesis or Diss., Angers, 2023. http://www.theses.fr/2023ANGE0017.
Texto completoArticle 1: Checkpoint inhibitors in metastatic papillary renal cell carcinoma : papillary Renal Cell Carcinoma (pRCC) is the most common non-clear cell RCC (nccRCC) and a distinct entity, although heterogenous, associated with poor outcomes. The treatment landscape of metastatic pRCC (mpRCC) relied so far on targeted therapies, mimicking previous developments in metastatic clear-cell renal cell carcinoma. However, antiangiogenics as well as mTOR inhibitors retain only limited activity in mpRCC. As development of immune checkpoint inhibitors (ICI) is now underway in patients with mpRCC, we aimed at discussing early activity data and potential for future therapeutic strategies in monotherapy or combination. Expression of immune checkpoints such as PD-L1 and infiltrative immune cells in pRCC could provide insights into their potential immunogenicity, although this is currently poorly described. Based on retrospective and prospective data, efficacy of ICI as single agent remains limited. Combinations with tyrosine-kinase inhibitors, notably with anti-MET inhibitors, harbor promising response rates and may enter the standard of care in untreated patients. Collaborative work is needed to refine the molecular and immune landscape of pRCC, and pursue efforts to set up predictive biomarker-driven clinical trials in these rare tumors. Article 2 : Comprehensive analyses of immune tumor microenvironment in papillary renal cell carcinoma. Background : papillary Renal CellCarcinoma (pRCC) is the most common non-clear cell RCC (nccRCC), and associated with poor outcomes in the metastatic setting. In this study, we aimed to comprehensively evaluate the immune tumor microenvironment (TME) ,largely unknown, of patients with metastatic pRCC and identify potential therapeutic targets. Methods : we performed quantitative gene expression analysis of TME using MCP-counter methodology, on 2 independent cohorts of localized pRCC (n=271 and n=98). We then characterized the TME, using immunohistochemistry (n=38) and RNA-sequencing (RNA-seq) (n=30) on metastatic pRCC from the prospective AXIPAP trial cohort. Results: unsupervised clustering identified 2 "TME subtypes", in each of the cohorts : the “immune-enriched” and the “immune-low”.Within AXIPAP trial cohort, the “immune-enriched” cluster was significantly associated with a worse prognosis according to the median overall survival to 8 months (95%CI, 6-29) versus 37 months (95%CI, 20-NA,p=0.001).The 2 immune signatures, Teff and JAVELIN Renal 101 Immuno signature, predictive of response to immune checkpoint inhibitors (CPI) in ccRCC, were significantly higher in the “immune-enriched” group (adjusted p<0.05). Finally, 5 differentially overexpressed genes were identified, corresponding mainly to B lymphocyte populations. Conclusion : for the first time, using RNA-seqand IHC, we have highlighted a specific immune TME subtype of metastatic pRCC, significantly more infiltrated with T and Bimmune population. This “immune-enriched” group appears to have a worse prognosis and could have a potential predictive value for response to immunotherapy, justifying the confirmation of these results in a cohort of metastatic pRCC treated with CPI and incombination with targeted therapies
Hollande, Clémence. "Rôle de dipeptidyl peptidase-4 dans la régulation du trafic leucocytaire au cours du carcinome hépatocellulaire". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066446/document.
Texto completoDipeptidyl peptidase-4 (DPP4 or CD26)–mediated post-translational modification of chemokines has been shown to negatively regulate lymphocyte trafficking, and its inhibition enhances T cell migration and tumor immunity by preserving functional CXCL10. In extending these initial findings to humans and pre-clinical hepatocellular carcinoma models, we discovered a new mechanism whereby DPP4 inhibition improves anti-tumor responses by eosinophil recruitment. Specifically, administration of DPP4 inhibitors (DPP4i) resulted in higher concentrations of CCL11 (or eotaxin) and increased CCR3-mediated eosinophil migration into mouse tumors. Enhanced tumor control was observed upon treatment with DPP4i, an effect strikingly preserved in Rag2–/– mice, and abrogated only upon depletion of eosinophils or inhibition of their degranulation. We further demonstrated that tumor expression of IL-33 was necessary and sufficient for eosinophil-mediated anti-tumor responses, and that this mechanism contributed to checkpoint inhibitor efficacy. These findings provide new insight into IL-33- and eosinophil-mediated tumor control, revealed when endogenous mechanisms of DPP4 immune regulation are inhibited
Dal, Cin Julian. "Analyse tissulaire des myopathies inflammatoires idiopathiques et induites par immune-checkpoint-inhibitor : apport des nouvelles approches transcriptomiques". Electronic Thesis or Diss., Sorbonne université, 2023. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2023SORUS151.pdf.
Texto completoMyositis are a heterogeneous group of autoimmune pathologies characterized by muscle damage in patients. Myositis are separated into 5 subgroups: dermatomyositis (DM), anti-synthetase syndromes (ASyS), inclusion body myositis (IBM), autoimmune necrotizing myopathies (IMNM) and immune-checkpoint inhibitor (ICI)-induced myositis. The pathophysiological mechanisms, clinical phenotype and prognosis of each subgroup are different. Among myositis, this work focused on IMNM and ICI-induced myositis, which have the poorest prognosis. High-resolution, spatial and single-cell transcriptomic studies have made it possible to study the muscle tissue of patients with these myositis. In ICI-induced myositis, these studies have confirmed the cytotoxicity of CD8 T cells and their central role, mainly of a population of resident memory T cells identified in the muscle, as well as macrophages. We propose a pathogenic model based on the reaction of resident memory T cells to ICI treatments. In IMNM, subgroups of macrophages have been identified composed respectively of pro-inflammatory macrophages, anti-inflammatory macrophages, and macrophages close to fibro-adipogenic progenitors (FAP). We propose that necrosis can stimulate macrophages and induce their recruitment, which would allow the proliferation of FAPs at the origin of exacerbated fibrosis in patients. Understanding mechanisms among others makes it possible to consider new therapeutic targets and improve patient prognosis
L'Orphelin, Jean-Matthieu. "Ρarticularité cliniques et impacts thérapeutiques des effets indésirables immunο-induits chez les patients atteints d'un mélanοme de stade ΙV". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMC406.
Texto completoBackground. Immune checkpoint inhibitors are the undisputed first-line treatment for stage IV melanoma, and are associated with adverse events, often immuno-related. Immune-related events are increasingly taken into account in therapeutic decisions, and there is a desire to individualize the management of patients with metastatic melanoma. A more detailed characterization of these events would enable better prediction of their occurrence and impact. Our knowledge of immuno-related events comes mainly from randomized phase III clinical trials, through the collection of safety data for the duration of the study. This does not allow us to identify late-onset safety signals, occurring long after the clinical trial, or rare safety signals not always reported in the publication. . Materials and methods. A safety meta-analysis conducted on randomized clinical trials from ClinicalTrials.gov aims to identify rare safety signals allowing greater comprehensiveness. We determined the type and incidence of rare events (represented by cardiovascular events) associated with exposure to immune checkpoint inhibitors in stage IV melanoma. Post-marketing studies have been carried out on three databases: RIC-Mel and Vigibase®, set up beforehand, and Melskintox, specifically set up to record cutaneous immune-related effects. These “real-life” studies make it possible to investigate the type, incidence and impact of dermatological immune-related events at risk of under-reporting, and to characterize all late-onset immune-related events late after the introduction of the immune checkpoint inhibitor, since follow-up from randomized clinical trials is too short to be informative. Finally, we discussed the safety of reintroducing an immune checkpoint inhibitor after an immuno-related event. Results. The meta-analysis enables us to identify some immuno-related events not initially identified in randomized clinical trials because they are rare and not systematically investigated, such as cardiovascular events. However, they can be serious as myocarditis and pericarditis. Some, such as dyslipidemia, suggest a long delay in onset, made possible by the extended overall survival of melanoma patients treated with immune checkpoint inhibitors. In real-life cohort studies, other severe late-onset events may occur long after from the initiation of treatment (after two years), affecting all organs. Patients with SSM melanoma appear to have a higher risk of late-onset adverse events. Certain frequent and rare serious immune-related events are imperfectly investigated, and the diversity of clinical presentations is poorly understood. The prognosis seems to differ depending on whether the cutaneous immuno-related effect is a benign inflammatory dermatosis, a pigmentary disorder, drug-related rash or bullous dermatosis. Finally, pharmacovigilance data on reintroduction vary according to the initial immune-related event, suggesting a higher recurrence rate for nephritis and cutaneous immuno-related events. Discussion and perspectivesThe occurrence of an immune-related event must be known and recognized with regard to its therapeutic impact, and be the subject of appropriate monitoring modalities. A more detailed knowledge of safety data and a better characterization of immune-related events will enable us to tailor our treatment pathways and proposals
Tannous, Désirée. "The combination of Gadolinium-based nanoparticles, radiotherapy and immune checkpoint inhibitors : a novel therapeutic opportunity for cancer treatment". Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPASL082.
Texto completoScientific discoveries linked to radiotherapy are in continuous progress and almost 60% of cancer diagnosed patients are treated with radiotherapy. However, radiation therapy still faces many limitations due to radioresistance and the side effects inflected on healthy tissues. To overcome these factors, a particular interest has been aroused on the role that nanomedicine could play in the improvement of immune-mediated anti-tumor response. In this context, we decided to assess the ability of the combination of Gadolinium nanoparticles (AGuIX) with ionizing radiation (IR) to stimulate an anti-tumor immunological response and to increase the effectiveness of radiotherapy combined to immune checkpoint blockers.AGuIX are very small nanoparticles composed of a polysiloxane matrix and gadolinium chelates. Thanks to the magnetic properties of gadolinium, these nanoparticles play the role of a contrast agent, in addition to its radiosensitizing properties, thus allowing a better targeting and an enhanced therapeutic index.Our work reveals the ability of the AGuIX+IR combination to induce genomic instability and to stimulate immunomodulatory cell signaling pathways in treated human and murine cancer cells. In parallel, we demonstrate the anti-tumor activity of this combination by assessing tumor growth and overall survival using a preclinical model of immunocompetent mice bearing tumors. Our results strongly demonstrate a synergistic effect of AGuIX + IR combination on tumor growth and overall survival by stimulating the immune system. Finally, we reveal the capacity of AGuIX + IR combination to overcome immune checkpoint blockers resistance.In conclusion, our work shows that the combination of AGuIX+IR stimulates immunomodulatory signaling pathways, induces a strong synergistic anti-tumor response and helps overcoming resistance to immunotherapies
Bendavid-Anquetil, Céline. "Rôle des anticorps monoclonaux au cours des myopathies auto-immunes : de l’étude des auto-anticorps spécifiques des myopathies nécrosantes auto-immunes à la description physiopathologique des myosites induites par l’immunothérapie anti-tumorale". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS257.
Texto completoMyositis is a rare autoimmune disease that may occur spontaneously, idiopathic inflammatory myopathies, or be induced by treatments such as immune checkpoint inhibitors (ICI). Among myositis, this work focused on the study of two entities: immune-mediated necrotizing myopathy (IMNM), and ICI-induced myositis. Inflammatory myopathies are separated into homogeneous subgroups in terms of clinical, biological, and histological phenotype thanks to the identification of myositis-specific autoantibodies. Each of these entities is associated with antibodies that play a role in the occurrence of the disease by different mechanisms. In IMNM, anti-SRP (signal recognition particle) autoantibodies appear to play a direct pathogenic role via activation of the classical complement pathway. Thirteen anti-SRP autoantibodies from patient samples were produced, including five autoantibodies specifically recognizing SRP by two different techniques. These human anti-SRP autoantibodies will be used to develop models of IMNM and to understand their mechanisms of action as well as to define their antigenic targets. Regarding ICI-induced myositis, therapeutic monoclonal antibodies directed against inhibitory co-stimulatory molecules induce a break of immune tolerance within the muscle tissue. The description of a series of patients from pharmacovigilance database allowed us to characterize a specific clinical phenotype associated with a poor prognosis, particularly in the case of associated myocarditis. The study of the systemic immune response and of the muscle transcriptomic profile has highlighted a central role of cytotoxic T lymphocytes and macrophages in the pathophysiology of the disease.Eventually, the description of pathophysiological mechanisms is mandatory to identify new therapeutic targets and then improve myositis treatment strategy
Dupaty, Léa. "Evaluation in vivo de protéines immunorégulatrices dérivées de CTLA-4 et de PD-L1 pour leur capacité à inhiber les réponses immunitaires dans le contexte de la thérapie génique musculaire par AAV". Thesis, Normandie, 2018. http://www.theses.fr/2018NORMR133/document.
Texto completoGene therapy consist into introducing genetic material into cells to treat genetic disorders. Most gene therapies use viral vectors to carry the gene within target cells. In case of monogenic disorders, adeno-associated viruses (AAV) has become a vector of choice because of its lack of pathogenicity, its large tropism and its capacity to transduce quiescent cells. The use of AAV is approved in Europe to treat a rare lysosomal storage disease and has recently been approved by the FDA to treat a genetic cause of blindness. However, most clinical trials face immune responses directed against AAV components which may be highly immunogenic. This deleterious immunogenicity often lead to the trial failure. In addition, transgenic protein can also be immunogenic, aimaing to the destruction of transduced cells and ultimatly to gene therapy failure. In clinic, immunosuppressive drug remain the only option to counteract unwanted immune responses. These drugs possess infectious and tumorigenic side effects, therefore strategies aiming to rather capable to induce tolerance toward the transgenic protein are being developped and needed. The objectif of this work was to implement a new strategy aiming to study the immunoregulatory and tolerogenic effect of fusion proteins derived from CTLA-4 and PD-L1. We used a murin model recapitulating the immunes responses induced by an AAV coding for an immunogenic model protein, ovalbumin (Ova) presented in previous studies by our group and others. Then, we synthesized AAV coding for our newly designed immunoregulatory protein and injected them into mice along with AAV-Ova. This strategy of vectorized immunoregulation (VIR) allowed to evaluate the intrinsic capacity of each individual proteins to modulate immune responses against Ova directly in vivo. Eventually, this work allow to 1) assess the benefits and limits of the VIR strategy, 2) the deletrious long-term effects of CTLA-4/Fc on central and peripheral Tregs in mice, 3) to demonstrate the interest of new molecules specifically derived from PD-L1/Fc over the immune tolerance through the long-term persistance of Ova transgene
Ben, Saad Elham. "Étude de l'endocytose du récepteur PD-1 dans les lymphocytes T humains". Thesis, 2019. http://hdl.handle.net/1866/23924.
Texto completoPD-1 (Programmed Cell death protein -1) is a co-inhibitory receptor expressed on the surface of activated T cells. It plays an important role in maintaining peripheral tolerance and protecting against autoimmune and inflammatory diseases. However, permanent expression of PD-1 and its ligands PD-L1/ PD-L2 (PD-Ls) disrupts the immune response against pathogens and tumor cells. Immune checkpoint blockade (ICB) targeting the PD-1/PD-Ls axis has revolutionized the treatment of many cancers. Nivolumab (nivo) and pembrolizumab (pembro) are two anti-PD-1 monoclonal antibodies (mAb) that block the interaction between PD-1 and its ligands. They have shown promising results in the treatment of multiple types of cancers such as melanoma, non-small cell lung cancer, renal cell carcinoma, etc. Surprisingly, despite the success of anti-PD-1 in cancer immunotherapy, no-one has defined the destiny of surface PD-1 following antibody binding. Therefore, the objective of my master thesis was to define the fate of surface PD-1 following antibody binding and whether different anti-PD-1 Abs in the clinic differ in their ability to induce PD-1 endocytosis. The study of PD-1 endocytosis was performed on human T lymphocytes obtained from peripheral blood of healthy donors and activated with anti-CD3/anti-CD28 Ab or concanavalin A to express PD-1 receptor. Data analysis by flow cytometry showed that following anti-PD-1 Ab binding, 50% of PD-1 becomes endocytosed by 30min. In addition, we found that the PD-1 receptor is internalised upon its engagement with nivo and pembro and that most of the receptor is endocytosed within 30 min. However, 32 to 50% of the receptors are resistant to endocytosis. The comparative analysis of nivo and pembro has revealed a statistically significant difference (p=0.03) between the internalisation rate of the PD-1/nivo complex versus PD-1/pembro (46% versus 25% by 30min, respectively). Even at high concentrations of pembro, nivo induces better internalization of PD-1, suggesting that nivo could be more effective than pembro. Our study showed for the first time that ICB involves not only in the blockade of PD-1/PD-Ls interaction, but also in the endocytosis of PD-1 receptors from the surface of human T-cells, which differs between nivolumab and pembrolizumab. These results could be exploited to increase the therapeutic potential of nivolumab and pembrolizumab in cancer treatment. Keywords: PD-1 receptor, PD-1 ligands, T lymphocytes, Immune checkpoint blockade, Anti-PD1 antibodies, Nivolumab, Pembrolizumab, Endocytosis, Cancer