Índice
Literatura académica sobre el tema "Informatique Neuromorphique"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Informatique Neuromorphique".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Informatique Neuromorphique"
Suri, Manan. "Technologies émergentes de mémoire résistive pour les systèmes et application neuromorphique". Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-00935190.
Texto completoMartinenghi, Romain. "Démonstration opto-électronique du concept de calculateur neuromorphique par Reservoir Computing". Thesis, Besançon, 2013. http://www.theses.fr/2013BESA2052/document.
Texto completoReservoir Computing (RC) is a currently emerging new brain-inspired computational paradigm, which appeared in theearly 2000s. It is similar to conventional recurrent neural network (RNN) computing concepts, exhibiting essentiallythree parts: (i) an input layer to inject the information in the computing system; (ii) a central computational layercalled the Reservoir; (iii) and an output layer which is extracting the computed result though a so-called Read-Outprocedure, the latter being determined after a learning and training step. The main originality compared to RNNconsists in the last part, which is the only one concerned by the training step, the input layer and the Reservoir beingoriginally randomly determined and fixed. This specificity brings attractive features to RC compared to RNN, in termsof simplification, efficiency, rapidity, and feasibility of the learning, as well as in terms of dedicated hardwareimplementation of the RC scheme. This thesis is indeed concerned by one of the first a hardware implementation of RC,moreover with an optoelectronic architecture.Our approach to physical RC implementation is based on the use of a sepcial class of complex system for the Reservoir,a nonlinear delay dynamics involving multiple delayed feedback paths. The Reservoir appears thus as a spatio-temporalemulation of a purely temporal dynamics, the delay dynamics. Specific design of the input and output layer are shownto be possible, e.g. through time division multiplexing techniques, and amplitude modulation for the realization of aninput mask to address the virtual nodes in the delay dynamics. Two optoelectronic setups are explored, one involving awavelength nonlinear dynamics with a tunable laser, and another one involving an intensity nonlinear dynamics with anintegrated optics Mach-Zehnder modulator. Experimental validation of the computational efficiency is performedthrough two standard benchmark tasks: the NARMA10 test (prediction task), and a spoken digit recognition test(classification task), the latter showing results very close to state of the art performances, even compared with purenumerical simulation approaches
Mesquida, Thomas. "Méthode de calcul et implémentation d’un processeur neuromorphique appliqué à des capteurs évènementiels". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAT117/document.
Texto completoStudying how our nervous system and sensory mechanisms work lead to the creation of event-driven sensors. These sensors follow the same principles as our eyes or ears for example. This Ph.D. focuses on the search for bio-inspired low power methods enabling processing data from this new kind of sensor. Contrary to legacy sensors, our retina and cochlea only react to the perceived activity in the sensory environment. The artificial “retina” and “cochlea” implementations we call dynamic sensors provide streams of events comparable to neural spikes. The quantity of data transmitted is closely linked to the presented activity, which decreases the redundancy in the output data. Moreover, not being forced to follow a frame-rate, the created events provide increased timing resolution. This bio-inspired support to convey data lead to the development of algorithms enabling visual tracking or speaker recognition or localization at the auditory level, and neuromorphic computing environment implementation. The work we present rely on these new ideas to create new processing solutions. More precisely, the applications and hardware developed rely on temporal coding of the data in the spike stream provided by the sensors
Novembre, Christophe. "Architectures des systèmes de l'information adaptées aux technologies nanométriques et/ou moléculaires : développement d'un composant moléculaire neuromorphique". Lille 1, 2007. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2007/50376-2007-Novembre.pdf.
Texto completoShahsavari, Mahyar. "Unconventional computing using memristive nanodevices : from digital computing to brain-like neuromorphic accelerator". Thesis, Lille 1, 2016. http://www.theses.fr/2016LIL10203/document.
Texto completoBy 2020, there will be 50 to 100 billion devices connected to the Internet. Two domains of hot research to address these high demands of data processing are the Internet of Things (IoT) and Big Data. The demands of these new applications are increasing faster than the development of new hardware particularly because of the slowdown of Moore's law. The main reason of the ineffectiveness of the processing speed is the memory wall or Von Neumann bottleneck which is coming from speed differences between the processor and the memory. Therefore, a new fast and power-efficient hardware architecture is needed to respond to those huge demands of data processing. In this thesis, we introduce novel high performance architectures for next generation computing using emerging nanotechnologies such as memristors. We have studied unconventional computing methods both in the digital and the analog domains. However, the main focus and contribution is in Spiking Neural Network (SNN) or neuromorphic analog computing. In the first part of this dissertation, we review the memristive devices proposed in the literature and study their applicability in a hardware crossbar digital architecture. At the end of part~I, we review the Neuromorphic and SNN architecture. The second part of the thesis contains the main contribution which is the development of a Neural Network Scalable Spiking Simulator (N2S3) suitable for the hardware implementation of neuromorphic computation, the introduction of a novel synapse box which aims at better learning in SNN platforms, a parameter exploration to improve performance of memristor-based SNN, and finally a study of the application of deep learning in SNN
Lévi, Timothée. "Méthodologie de développement d'une bibliothèque d'IP-AMS en vue de la conception automatisée de systèmes sur puces analogiques et mixtes : application à l'ingénierie neuromorphique". Bordeaux 1, 2007. http://www.theses.fr/2007BOR13480.
Texto completoAbderrahmane, Nassim. "Impact du codage impulsionnel sur l’efficacité énergétique des architectures neuromorphiques". Thesis, Université Côte d'Azur, 2020. http://www.theses.fr/2020COAZ4082.
Texto completoNowadays, Artificial Intelligence (AI) is a widespread concept applied to many fields such as transportation, medicine and autonomous vehicles. The main AI algorithms are artificial neural networks, which can be divided into two families: Spiking Neural Networks (SNNs), which are bio-inspired models resulting from neuroscience, and Analog Neural Networks (ANNs), which result from machine learning. The ANNs are experiencing unprecedented success in research and industrial fields, due to their recent successes in many application contexts such as image classification and object recognition. However, they require considerable computational capacity for their deployment which is not adequate to very constrained systems such as 'embedded systems'. To overcome these limitations, many researchers are interested in brain-inspired computing, which would be the perfect alternative to conventional computers based on the Von Neumann architecture (CPU/GPU). This paradigm meets computing performance but not energy efficiency requirements. Hence, it is necessary to design neuromorphic hardware circuits adaptable to parallel and distributed computing. In this context, we have set criteria in terms of accuracy and hardware implementation cost to differentiate the two neural families (SNNs and ANNs). In the case of simple network topologies, we conducted a study that has shown that the spiking models have significant gains in terms of hardware cost when compared to the analog networks, with almost similar prediction accuracies. Therefore, the objective of this thesis is to design a generic neuromorphic architecture that is based on spiking neural networks. To this end, we have set up a three-level design flow for exploring and implementing neuromorphic architectures.In an energy efficiency context, a thorough exploration of different neural coding paradigms for neural data representation in SNNs has been carried out. Moreover, new derivative versions of rate-based coding have been proposed that aim to get closer to the activity produced by temporal coding, which is characterized by a reduced number of spikes propagating in the network. In this way, the number of spikes can be reduced so that the number of events to be processed in the SNNs gets smaller. The aim in doing this approach is to reduce the hardware architecture's energy consumption. The proposed coding approaches are: First Spike, which is characterized using at most one single spike to present an input data, and Spike Select, which allows to regulate and minimize the overall spiking activity in the SNN.In the RTL design exploration, we quantitatively compared three SNN architectural models having different levels of computing parallelism and multiplexing. Using Spike Select coding results in a distribution regulation of the spiking data, with most of them generated within the first layer and few of them propagate into the deep layers. Such distribution benefits from a so-called 'hybrid architecture' that includes a fully-parallel part for the first layer and multiplexed parts to the other layers. Therefore, combining the Spike Select and the Hybrid Architecture would be an effective solution for embedded AI applications, with an efficient hardware and latency trade-off.Finally, based on the architectural and neural choices resulting from the previous exploration, we have designed a final event-based architecture dedicated to SNNs supporting different neural network types and sizes. The architecture supports the most used layers: convolutional, pooling and fully-connected. Using this architecture, we will be able to compare analog and spiking neural networks on realistic applications and to finally conclude about the use of SNNs for Embedded Artificial Intelligence
Lagorce, Xavier. "Computational methods for event-based signals and applications". Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066434/document.
Texto completoComputational Neurosciences are a great source of inspiration for data processing and computation. Nowadays, how great the state of the art of computer vision might be, it is still way less performant that what our brains or the ones from other animals or insects are capable of. This thesis takes on this observation to develop new computational methods for computer vision and generic computation relying on data produced by event-based sensors such as the so called “silicon retinas”. These sensors mimic biology and are used in this work because of the sparseness of their data and their precise timing: information is coded into events which are generated with a microsecond precision. This opens doors to a whole new paradigm for machine vision, relying on time instead of using images. We use these sensors to develop applications such as object tracking or recognition and feature extraction. We also used computational neuromorphic platforms to better implement these algorithms which led us to rethink the idea of computation itself. This work proposes new ways of thinking computer vision via event-based sensors and a new paradigm for computation. Time is replacing memory to allow for completely local operations, enabling highly parallel machines in a non-Von Neumann architecture
La, Barbera Selina. "Development of filamentary Memristive devices for synaptic plasticity implementation". Thesis, Lille 1, 2015. http://www.theses.fr/2015LIL10163/document.
Texto completoReplicating the computational functionalities of the brain remains one of the biggest challenges for the future of information and communication technologies. In this context, neuromorphic engineering appears a very promising direction. In this context memristive devices have been recently proposed for the implementation of synaptic functions, offering the required features and integration potentiality in a single component. In this dissertation, we present how advanced synaptic features can be implemented in memristive nanodevices. By exploiting the physical properties of filamentary switching, we successfully implemented a non-Hebbian plasticity form corresponding to the synaptic adaptation. We demonstrate that complex filament shape, such as dendritic paths of variable density and width, can reproduce short- and long- term processes observed in biological synapses and can be conveniently controlled by achieving a flexible way to program the device memory state and the relative state volatility. Then, we show that filamentary switching can be additionally controlled to reproduce a Hebbian plasticity form that corresponds to an increase of the synaptic weight when time correlation between pre- and post-neuron firing is experienced at the synaptic connection. We interpreted our results in the framework of a phenomenological model developed for biological synapses. Finally, we exploit this model to investigate how spike-based systems can be realized for memory and computing applications. These results pave the way for future engineering of neuromorphic computing systems, where complex behaviors of memristive physics can be exploited
Ly, Denys. "Mémoires résistives et technologies 3D monolithiques pour processeurs neuromorphiques impulsionnels et reconfigurables". Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALT016.
Texto completoThe human brain is a complex, energy-efficient computational system that excels at cognitive tasks thanks to its natural capability to perform inference. By contrast, conventional computing systems based on the classic Von Neumann architecture require large power budget to execute such assignments. Herein comes the idea to build brain-inspired electronic computing systems, the so-called neuromorphic approach. In this thesis, we explore the use of novel technologies, namely Resistive Memories (RRAMs) and three-dimensional (3D) monolithic technologies, to enable the hardware implementation of compact, low-power reconfigurable Spiking Neural Network (SNN) processors. We first provide a comprehensive study of the impact of RRAM electrical properties on SNNs with RRAM synapses and trained with unsupervised learning (Spike-Timing-Dependent Plasticity (STDP)). In particular, we clarify the role of synaptic variability originating from RRAM resistance variability. Second, we investigate the use of RRAM-based Ternary Content-Addressable Memory (TCAM) arrays as synaptic routing tables in SNN processors to enable on-the-fly reconfigurability of network topology. For this purpose, we present in-depth electrical characterisations of two RRAM-based TCAM circuits: (i) the most common two-transistors/two-RRAMs (2T2R) RRAM-based TCAM, and (ii) a novel one-transistor/two-RRAMs/one-transistor (1T2R1T) RRAM-based TCAM, both featuring the smallest silicon area up-to-date. We compare both structures in terms of performance, reliability, and endurance. Finally, we explore the potential of 3D monolithic technologies to improve area-efficiency. In addition to the conventional monolithic integration of RRAMs in the back-end-of-line of CMOS technology, we examine the vertical stacking of CMOS over CMOS transistors. To this end, we demonstrate the full 3D monolithic integration of two tiers of CMOS transistors with one tier of RRAM devices, and present electrical characterisations performed on the fabricated devices