Literatura académica sobre el tema "Infinite-layer nickelates"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Infinite-layer nickelates".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Infinite-layer nickelates"
Nomura, Yusuke y Ryotaro Arita. "Superconductivity in infinite-layer nickelates". Reports on Progress in Physics 85, n.º 5 (28 de marzo de 2022): 052501. http://dx.doi.org/10.1088/1361-6633/ac5a60.
Texto completoLu, H., M. Rossi, A. Nag, M. Osada, D. F. Li, K. Lee, B. Y. Wang et al. "Magnetic excitations in infinite-layer nickelates". Science 373, n.º 6551 (8 de julio de 2021): 213–16. http://dx.doi.org/10.1126/science.abd7726.
Texto completoJi, Yaoyao, Junhua Liu, Lin Li y Zhaoliang Liao. "Superconductivity in infinite layer nickelates". Journal of Applied Physics 130, n.º 6 (14 de agosto de 2021): 060901. http://dx.doi.org/10.1063/5.0056328.
Texto completoGabay, Marc, Stefano Gariglio y Jean-Marc Triscone. "Functionally doped infinite-layer nickelates". Nature Materials 21, n.º 2 (febrero de 2022): 139–40. http://dx.doi.org/10.1038/s41563-021-01163-4.
Texto completoLin, Hai, Dariusz Jakub Gawryluk, Yannick Maximilian Klein, Shangxiong Huangfu, Ekaterina Pomjakushina, Fabian von Rohr y Andreas Schilling. "Universal spin-glass behaviour in bulk LaNiO2, PrNiO2 and NdNiO2". New Journal of Physics 24, n.º 1 (1 de enero de 2022): 013022. http://dx.doi.org/10.1088/1367-2630/ac465e.
Texto completoHirsch, J. E. y F. Marsiglio. "Hole superconductivity in infinite-layer nickelates". Physica C: Superconductivity and its Applications 566 (noviembre de 2019): 1353534. http://dx.doi.org/10.1016/j.physc.2019.1353534.
Texto completoLi, Yueying, Xiangbin Cai, Wenjie Sun, Jiangfeng Yang, Wei Guo, Zhengbin Gu, Ye Zhu y Yuefeng Nie. "Synthesis of Chemically Sharp Interface in NdNiO3/SrTiO3 Heterostructures". Chinese Physics Letters 40, n.º 7 (1 de junio de 2023): 076801. http://dx.doi.org/10.1088/0256-307x/40/7/076801.
Texto completoJin, Hyo-Sun, Warren E. Pickett y Kwan-Woo Lee. "A d 8 anti-Hund’s singlet insulator in an infinite-layer nickelate". Journal of Physics: Materials 5, n.º 2 (1 de abril de 2022): 024008. http://dx.doi.org/10.1088/2515-7639/ac6040.
Texto completoZhang, Yajun, Xu He y Philippe Ghosez. "Magnetic excitations in infinite-layer LaNiO2". Applied Physics Letters 122, n.º 15 (10 de abril de 2023): 152401. http://dx.doi.org/10.1063/5.0141039.
Texto completoPtok, Andrzej, Surajit Basak, Przemysław Piekarz y Andrzej M. Oleś. "Influence of f Electrons on the Electronic Band Structure of Rare-Earth Nickelates". Condensed Matter 8, n.º 1 (8 de febrero de 2023): 19. http://dx.doi.org/10.3390/condmat8010019.
Texto completoTesis sobre el tema "Infinite-layer nickelates"
Raji, Aravind. "Exploring the electronic and structural properties of tantalates and infinite-layer nickelates via electron microscopy and x-ray spectroscopy approaches". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP116.
Texto completoMaterial systems such as transition metal oxides (TMO) exhibits robust functionalities, strongly coupled with its electronic and structural degrees of freedom. One can stabilize novel TMO structures hosting novel properties by controlling these degrees of freedom, as is the case of superconducting infinite-layer (IL) nickelates, two-dimensional electron gases (2DEGs) in KTaO₃, etc. In this thesis, a combination of complementary techniques has been employed that is the scanning transmission electron microscopy (STEM)- electron energy loss spectroscopy (EELS), four dimensional (4D)-STEM, hard X-ray photoemission spectroscopy (HAXPES) and complementary ab-initio calculations and X-ray scattering experiments to elucidate the origins of the complex physics exhibited by these systems. This thesis begins by exploring the origins of competing orders such as the 3a₀ periodic charge order in IL-nickelates, observed in X-ray scattering experiments. Here, through a combined analysis with STEM-EELS, 4D-STEM and HAXPES, this particular ordering was found to be originating from a particular {303}pc ordering of oxygen vacancies in the nickelate thin-film. Further exploration resulted in the discovery of a new valence ordered and tri-component coordinated nickelate phase with the formula A₉B₉O₂₂, that is an intermediate between the parent perovskite and reduced IL-nickelate. Considering the possible contribution of the substrate thin film interface nanostructure to the superconductivity, a combined study with STEM-EELS, 4D-STEM, HAXPES and ab-initio calculations of the interface was done. It was found that there are highly different n-type and p-type interfaces exists in superconducting samples. This non-universality of interface nanostructure in superconducting IL-nickelate samples, decoupled the interface influence and superconductivity in IL-nickelates. This generated interest in studying an oxide interface, where the interface is superconducting, and in the followed part, the superconducting 2DEGs in AlOₓ/KTaO₃ was explored. The electronic and structural aspect of the AlOₓ/KTaO₃ interface controlling the 2DEG was studied using STEM-EELS and HAXPES. A real space map of the 2DEG was obtained, along with indications of a significant unit cell expansion in this region. Layer resolved standing wave (SW)-HAXPES also indicated a substantial polar like displacement for the reduced Ta atoms at the interface. While this thesis explores the structural and electronic aspects of specific systems, the combined approach using electrons (STEM-EELS, 4D-STEM) and X-rays (HAXPES) can be applied to a wide range of TMO systems. It can unravel the origins of complex properties exhibited by them
Adhikary, Priyo. "Superconductivity in strongly correlated systems: Heavy fermions, Cuprates, Infinite-layer Nickelates". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5570.
Texto completoCapítulos de libros sobre el tema "Infinite-layer nickelates"
LaBollita, Harrison. "Conductivity of Infinite-Layer Nickelate as a Probe of Spectator Bands". En Springer Theses, 73–86. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-71548-8_6.
Texto completo