Índice
Literatura académica sobre el tema "Inférence bayésienne approximative"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Inférence bayésienne approximative".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Inférence bayésienne approximative"
Kurisummoottil, Thomas Christo. "Sparse Bayesian learning, beamforming techniques and asymptotic analysis for massive MIMO". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS231.
Texto completoMultiple antennas at the base station side can be used to enhance the spectral efficiency and energy efficiency of the next generation wireless technologies. Indeed, massive multi-input multi-output (MIMO) is seen as one promising technology to bring the aforementioned benefits for fifth generation wireless standard, commonly known as 5G New Radio (5G NR). In this monograph, we will explore a wide range of potential topics in multi-userMIMO (MU-MIMO) relevant to 5G NR,• Sum rate maximizing beamforming (BF) design and robustness to partial channel stateinformation at the transmitter (CSIT)• Asymptotic analysis of the various BF techniques in massive MIMO and• Bayesian channel estimation methods using sparse Bayesian learning.One of the potential techniques proposed in the literature to circumvent the hardware complexity and power consumption in massive MIMO is hybrid beamforming. We propose a globally optimal analog phasor design using the technique of deterministic annealing, which won us the best student paper award. Further, in order to analyze the large system behaviour of the massive MIMO systems, we utilized techniques from random matrix theory and obtained simplified sum rate expressions. Finally, we also looked at Bayesian sparse signal recovery problem using the technique called sparse Bayesian learning (SBL). We proposed low complexity SBL algorithms using a combination of approximate inference techniques such as belief propagation (BP), expectation propagation and mean field (MF) variational Bayes. We proposed an optimal partitioning of the different parameters (in the factor graph) into either MF or BP nodes based on Fisher information matrix analysis
Raynal, Louis. "Bayesian statistical inference for intractable likelihood models". Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS035/document.
Texto completoIn a statistical inferential process, when the calculation of the likelihood function is not possible, approximations need to be used. This is a fairly common case in some application fields, especially for population genetics models. Toward this issue, we are interested in approximate Bayesian computation (ABC) methods. These are solely based on simulated data, which are then summarised and compared to the observed ones. The comparisons are performed depending on a distance, a similarity threshold and a set of low dimensional summary statistics, which must be carefully chosen.In a parameter inference framework, we propose an approach combining ABC simulations and the random forest machine learning algorithm. We use different strategies depending on the parameter posterior quantity we would like to approximate. Our proposal avoids the usual ABC difficulties in terms of tuning, while providing good results and interpretation tools for practitioners. In addition, we introduce posterior measures of error (i.e., conditionally on the observed data of interest) computed by means of forests. In a model choice setting, we present a strategy based on groups of models to determine, in population genetics, which events of an evolutionary scenario are more or less well identified. All these approaches are implemented in the R package abcrf. In addition, we investigate how to build local random forests, taking into account the observation to predict during their learning phase to improve the prediction accuracy. Finally, using our previous developments, we present two case studies dealing with the reconstruction of the evolutionary history of Pygmy populations, as well as of two subspecies of the desert locust Schistocerca gregaria
Dehaene, Guillaume. "Le statisticien neuronal : comment la perspective bayésienne peut enrichir les neurosciences". Thesis, Sorbonne Paris Cité, 2016. http://www.theses.fr/2016USPCB189.
Texto completoBayesian inference answers key questions of perception such as: "What should I believe given what I have perceived ?". As such, it is a rich source of models for cognitive science and neuroscience (Knill and Richards, 1996). This PhD manuscript explores two such models. We first investigate an efficient coding problem, asking the question of how to best represent probabilistic information in unrealiable neurons. We innovate compared to older such models by introducing limited input information in our own. We then explore a brand new ideal observer model of localization of sounds using the Interaural Time Difference cue, when current models are purely descriptive models of the electrophysiology. Finally, we explore the properties of the Expectation Propagation approximate-inference algorithm, which offers great potential for both practical machine-learning applications and neuronal population models, but is currently very poorly understood
Ducamp, Gaspard. "PROCOP : probabilistic rules compilation and optimisation". Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS090.
Texto completoWidely adopted for more than 20 years in industrial fields, business rules offer the opportunity to non-IT users to define decision-making policies in a simple and intuitive way. To facilitate their use, rule-based systems, known as business rule management systems, have been developed, separating the business logic from the computer application. While they are suitable for processing structured and complete data, they do not easily allow working with probabilistic data. PROCOP (Probabilistic Rules Optimized and COmPilation) is a thesis proposing a new approach for the integration of probabilistic reasoning in IBM Operational Decision Manager (ODM), IBM's business rules management system, in particular through the introduction of a concept of global risk on the evaluation of the execution conditions of an action, complicating the compilation phase of the system but increasing the expressiveness of the business rules. Various methods are explored, implemented and compared in order to allow the use of such a powerful reasoning capacity on a large scale, in particular in order to answer the problems linked to the use of probabilistic graphical models in complex networks
Rau, Andrea. "Inférence rétrospective de réseaux de gènes à partir de données génomiques temporelles". Phd thesis, 2010. http://tel.archives-ouvertes.fr/tel-00568663.
Texto completoDans ce travail, nous proposons deux méthodes pour l'identification des réseaux de gènes régulateurs qui se servent des réseaux Bayésiens dynamiques et des modèles linéaires. Dans la première méthode, nous développons un algorithme dans un cadre bayésien pour les modèles linéaires espace-état (state-space model). Les hyperparamètres sont estimés avec une procédure bayésienne empirique et une adaptation de l'algorithme espérance-maximisation. Dans la deuxième approche, nous développons une extension d'une méthode de Approximate Bayesian Computation basé sur une procédure de Monte Carlo par chaînes de Markov pour l'inférence des réseaux biologiques. Cette méthode échantillonne des lois approximatives a posteriori des interactions gène-à-gène et fournit des informations sur l'identifiabilité et le robustesse des structures sous-réseaux. La performance des deux approches est étudié via un ensemble de simulations, et les deux sont appliqués aux données transcriptomiques.